0


基于协因子化模型的项目推荐和知识图完成的迁移学习

Transfer Learning for Item Recommendations and Knowledge Graph Completion in Item Related Domains via A Co-Factorization Model
课程网址: http://videolectures.net/eswc2018_piao_transfer_learning/  
主讲教师: Guangyuan Piao
开课单位: 爱尔兰国立大学
开课时间: 2018-07-10
课程语种: 英语
中文简介:
近年来,随着知识图(KGs)的普及,已有许多研究利用KGs中丰富的背景知识来完成项目推荐任务。然而,在利用KGs的知识时,很少注意KGs的不完整性。此外,先前的研究主要集中于利用KG中的知识进行项目推荐,目前尚不清楚我们是否可以以其他方式利用知识,即用户-项目交互历史是否可以用于提高完成KG的项目领域性能。在本文中,我们通过一个可以被视为转移学习模型的协因子分解模型(CoFM),研究了两个任务之间的知识转移效应:(1)项目推荐和(2)KG完成。我们通过将CoFM与每项任务的三种竞争性基线方法进行比较来评估CoFM。结果表明,考虑KG的不完整性优于其他比较方法,包括利用KG现有知识的最先进的因子分解方法。此外,研究结果表明,利用用户-项目交互历史也提高了完成项目领域的KG的性能,这是以前没有研究过的。
课程简介: With the popularity of Knowledge Graphs (KGs) in recent years, there have been many studies leveraging the abundant background knowledge available in KGs for the task of item recommendations. However, little attention has been paid to the incompleteness of KGs when leveraging knowledge from them. In addition, previous studies have mainly focused on exploiting knowledge from a KG for item recommendations, and it is unclear whether we can exploit the knowledge in the other way, i.e, whether user-item interaction histories can be used for improving the performance of completing the KG with regard to the domain of items. In this paper, we investigate the effect of knowledge transfer between two tasks: (1) item recommendations, and (2) KG completion, via a co-factorization model (CoFM) which can be seen as a transfer learning model. We evaluate CoFM by comparing it to three competitive baseline methods for each task. Results indicate that considering the incompleteness of a KG outperforms other compared methods, including a state-of-the-art factorization method leveraging existing knowledge from the KG. In addition, the results show that exploiting user-item interaction histories also improves the performance of completing the KG with regard to the domain of items, which has not been studied before
关 键 词: 背景知识; 领域性能; 因子分解
课程来源: 视频讲座网
数据采集: 2022-12-14:chenjy
最后编审: 2023-05-11:chenjy
阅读次数: 22