0


人道主义领域的结构化事件实体解决

Structured Event Entity Resolution in Humanitarian Domains
课程网址: http://videolectures.net/iswc2018_kejriwal_structured_event/  
主讲教师: Mayank Kejriwal
开课单位: 南加州大学信息科学研究所(ISI)
开课时间: 2018-11-22
课程语种: 英语
中文简介:
在人道主义援助和灾难救援(HADR)等领域,事件而非指定实体是分析人员和援助官员的主要关注点。为援助提供者提供态势感知,必须解决的一个重要问题是自动聚类引用相同基础事件的子事件。这个问题的有效解决方案需要明智地使用特定领域和语义信息,以及诸如深度神经嵌入之类的统计方法。在本文中,我们提出了一种方法AugSEER(用于结构化事件实体解析的增强特征集),该方法将文本和图形数据上的深度神经嵌入的进展与领域专家的最小监督输入相结合。AugSEER可以在在线和批处理场景中运行。在五个真实世界的HADR数据集上,AugSEER平均而言,在聚类纯度指标上超过次优基线结果近15%,在F1度量指标上超过3%。相反,基于文本的方法表现不佳,这表明了语义信息在设计好解决方案中的重要性。我们还使用子事件聚类可视化来说明AugSEER的定性潜力。
课程简介: In domains such as humanitarian assistance and disaster relief (HADR), events, rather than named entities, are the primary focus of analysts and aid officials. An important problem that must be solved to provide situational awareness to aid providers is automatic clustering sub-events that refer to the same underlying event. An effective solution to the problem requires judicious use of both domain-specific and semantic information, as well as statistical methods like deep neural embeddings. In this paper, we present an approach, AugSEER (Augmented feature sets for Structured Event Entity Resolution), that combines advances in deep neural embeddings both on text and graph data with minimally supervised inputs from domain experts. AugSEER can operate in both online and batch scenarios. On five real-world HADR datasets, AugSEER is found, on average, to outperform the next best baseline result by almost 15% on the cluster purity metric and by 3% on the F1-Measure metric. In contrast, text-based approaches are found to perform poorly, demonstrating the importance of semantic information in devising a good solution. We also use sub-event clustering visualizations to illustrate the qualitative potential of AugSEER.
关 键 词: 人道主义领域; 结构化事件实体解决; 结构化事件实体解析; 深度神经嵌入
课程来源: 视频讲座网
数据采集: 2022-12-15:cyh
最后编审: 2022-12-20:cyh
阅读次数: 20