图形内核的RDF数据Graph Kernels for RDF data |
|
课程网址: | http://videolectures.net/eswc2012_rettinger_rdf_data/ |
主讲教师: | Achim Rettinger |
开课单位: | 卡尔斯鲁厄理工学院 |
开课时间: | 2012-07-04 |
课程语种: | 英语 |
中文简介: | 资源描述框架(RDF)格式中结构化数据的日益增加的可用性为数据挖掘带来了新的挑战和机遇。挖掘RDF的现有方法仅关注于一种特定的数据表示,一种特定的机器学习算法或一种特定的任务。然而,内核通过提供一个强大的框架来实现更灵活的方法,该框架用于将数据表示与学习任务分离。本文重点介绍如何将已建立的基于内核的机器学习算法系列轻松应用于表示为RDF图的实例。我们首先回顾一下传统图形内核用于RDF图时出现的问题。然后,我们基于交叉图和交叉树引入两个通用的RDF图形内核系列。这些内核可以更好地利用RDF的固有属性,同时在任何RDF图形(包括RDFS和OWL等词汇扩展)和任何基于内核的学习算法(可用于解决许多机器学习任务)之间提供易于使用的接口。 。该方法的灵活性在两个常见的关系学习任务上得到证明:实体分类和链接预测。结果表明,与两种任务的专业技术相比,我们的新型RDF图形核与标准SVM实现了竞争性预测性能。 |
课程简介: | The increasing availability of structured data in Resource Description Framework (RDF) format poses new challenges and opportunities for data mining. Existing approaches to mining RDF have focused on one specific data representation, one specific machine learning algorithm or one specific task, only. Kernels, however, promise a more flexible approach by providing a powerful framework for decoupling the data representation from the learning task. This paper focuses on how the well established family of kernel-based machine learning algorithms can be readily applied to instances represented as RDF graphs. We first review the problems that arise when conventional graph kernels are used for RDF graphs. We then introduce two versatile families of RDF graph kernels based on intersection graphs and intersection trees. These kernels can better exploit the inherent properties of RDF, while providing an easy to use interface between any RDF graph (including vocabulary extensions such as RDFS and OWL) and any kernel-based learning algorithm (which are available for solving many machine learning tasks). The flexibility of the approach is demonstrated on two common relational learning tasks: entity classification and link prediction. The results show that our novel RDF graph kernels with standard SVMs achieve competitive predictive performance when compared to specialized techniques for both tasks. |
关 键 词: | 资源描述框架; 学习任务解耦; 机器学习算法 |
课程来源: | 视频讲座网 |
最后编审: | 2021-06-27:zyk |
阅读次数: | 49 |