0


泛化边界

Generalization bounds
课程网址: http://videolectures.net/mlss05us_langford_gb/  
主讲教师: John Langford
开课单位: 微软研究
开课时间: 2007-02-25
课程语种: 英语
中文简介:
当一个学习算法产生一个分类器时,要问的一个自然问题是“它将来会做得怎么样?”考虑到过去,要对未来做出陈述,必须做出一些假设。如果我们只假设所有的例子都是从某种(未知)分布中独立而相同地得出的,那么我们就可以回答这个问题。这个问题的答案直接适用于分类器测试和置信报告。它还提供了“过拟合”的简单一般解释,并影响了算法设计。
课程简介: When a learning algorithm produces a classifier, a natural question to ask is "How well will it do in the future?" To make statements about the future given the past, some assumption must be made. If we make only an assumption that all examples are drawn independently and identically from some (unknown) distribution, we can answer the question. The answer to this question is directly applicable to classifier testing and confidence reporting. It also provides a simple general explanation of "overfitting", and influences algorithm design.
关 键 词: 学习算法; 分类器测试; 置信报告
课程来源: 视频讲座网
数据采集: 2022-12-19:chenjy
最后编审: 2023-05-11:chenjy
阅读次数: 80