0


语义信息检索的三部分神经文档语言模型

A Tri-Partite Neural Document Language Model for Semantic Information Retrieval
课程网址: http://videolectures.net/eswc2018_nguyen_information_retrieval/  
主讲教师: Gia Hung Nguyen
开课单位: 图卢兹大学
开课时间: 2018-07-10
课程语种: 英语
中文简介:
以前在信息检索方面的工作表明,使用来自外部知识资源的证据,例如概念和关系,可以提高检索性能。最近,深度神经方法已经成为捕捉单词语义的最先进模型,也可以有效地注入到IR模型中。本文提出了一种新的三方神经文档语言框架,该框架利用显式知识来联合约束单词、概念和文档学习表示,以解决包括多义和粒度不匹配在内的许多问题。我们展示了该框架在各种IR任务中的有效性,包括文档相似性、文档重新排序和查询扩展。
课程简介: Previous work in information retrieval have shown that using evidence, such as concepts and relations, from external knowledge resources could enhance the retrieval performance. Recently, deep neural approaches have emerged as state-of-the art models for capturing word semantics that can also be efficiently injected in IR models. This paper presents a new tri-partite neural document language framework that leverages explicit knowledge to jointly constrain word, concept, and document learning representations to tackle a number of issues including polysemy and granularity mismatch. We show the effectiveness of the framework in various IR tasks including document similarity, document re-ranking, and query expansion.
关 键 词: 信息检索; 深度神经; 文档学习
课程来源: 视频讲座网
数据采集: 2022-12-20:chenjy
最后编审: 2023-05-11:chenjy
阅读次数: 18