关于严格正函数的拟牛顿方法的有效性Efficiency of Quasi-Newton Methods on Strictly Positive Functions |
|
课程网址: | http://videolectures.net/nipsworkshops2010_nesterov_eqn/ |
主讲教师: | Yurii Nesterov |
开课单位: | 卢旺天主教大学 |
开课时间: | 2011-01-13 |
课程语种: | 英语 |
中文简介: | 在本文中,我们考虑了一类新的凸优化问题,它允许更快的黑箱优化方案。为了分析它们的收敛速度,我们引入了近似解的混合精度的概念,这是绝对精度和相对精度的方便推广。我们证明,对于我们的问题类,自然拟牛顿法总是比标准梯度法更快。同时,经过适当的归一化,我们的结果可以推广到一般的凸无约束最小化问题。 |
课程简介: | In this talk we consider a new class of convex optimization problems, which admit faster black-box optimization schemes. For analyzing their rate of convergence, we introduce a notion of mixed accuracy of an approximate solution, which is a convenient generalization of the absolute and relative accuracies. We show that for our problem class, a natural Quasi-Newton method is always faster than the standard gradient method. At the same time, after an appropriate normalization, our results can be extended onto the general convex unconstrained minimization problems. |
关 键 词: | 黑箱优化; 混合精度; 计算机科学 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-21:chenjy |
最后编审: | 2023-05-11:chenjy |
阅读次数: | 15 |