利布代libDAI |
|
课程网址: | http://videolectures.net/mloss08_mooij_libdai/ |
主讲教师: | Joris Mooij |
开课单位: | 奈梅亨拉德布大学 |
开课时间: | 2008-12-20 |
课程语种: | 英语 |
中文简介: | libDAI是一个免费的开源C++库(根据GPL许可),它为离散图形模型提供各种(近似)推理方法的实现。libDAI支持带有离散变量的任意因子图;这包括离散马尔可夫随机场和贝叶斯网络。该图书馆面向研究人员;为了能够使用该库,需要对图形模型有很好的理解。目前,libDAI支持以下(近似)推理方法:通过暴力枚举进行的精确推理、通过连接树方法进行的精确推断、平均场、循环信念传播、树期望传播、广义信念传播、双循环GBP以及循环校正信念传播的各种变体。计划的扩展是吉布斯采样和IJGP,以及获得分区和和边界边界的各种方法(边界传播、盒传播、基于树的重新参数化)。 |
课程简介: | libDAI is a free and open source C++ library (licensed under GPL) that provides implementations of various (approximate) inference methods for discrete graphical models. libDAI supports arbitrary factor graphs with discrete variables; this includes discrete Markov Random Fields and Bayesian Networks. The library is targeted at researchers; to be able to use the library, a good understanding of graphical models is needed. Currently, libDAI supports the following (approximate) inference methods: exact inference by brute force enumeration, exact inference by junction-tree methods, Mean Field, Loopy Belief Propagation, Tree Expectation Propagation, Generalized Belief Propagation, Double-loop GBP, and various variants of Loop Corrected Belief Propagation. Planned extensions are Gibbs sampling and IJGP, as well as various methods for obtaining bounds on the partition sum and on marginals (Bound Propagation, Box Propagation, Tree-based Reparameterization). |
关 键 词: | 离散图形; 贝叶斯网络; 吉布斯采样 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-24:chenjy |
最后编审: | 2023-05-11:chenjy |
阅读次数: | 13 |