词汇术语的演变及其对LOD云的影响分析Analyzing the Evolution of Vocabulary Terms and their Impact on the LOD Cloud |
|
课程网址: | http://videolectures.net/eswc2018_abdel_qader_vocabulary_terms/ |
主讲教师: | Mohammad Abdel Qader |
开课单位: | 基尔基督教阿尔布雷希特斯大学 |
开课时间: | 2018-07-10 |
课程语种: | 英语 |
中文简介: | 词汇用于建模知识图(KGs)中的数据,如链接的开放数据云和Wikidata。在他们的一生中,词汇会发生变化。新术语被创造,而现有术语被修改或弃用。我们首先量化词汇变化的数量和频率。随后,我们调查了在KGs的演变中,采用这些变化的范围和时间。我们在三个具有时间戳信息的大型KGs上进行了实验,即Billion Triples Challenge数据集、Dynamic Linked Data Observatory数据集和Wikidata。我们的结果表明,术语的更改频率相当低,但由于web上有大量分布的图形数据,因此可能会产生很大的影响。此外,并不是所有创造的术语都被使用,数据发布者仍然使用大多数被弃用的术语。来自不同词汇的术语采用时间从很快(几天)到很慢(几年)不等。令人惊讶的是,在词汇变化公布之前,我们可以观察到一些收养行为。理解词汇术语的演变对于避免对web上发布的数据建模状态的错误假设非常重要,这可能会导致从分布式源查询数据时出现困难。 |
课程简介: | Vocabularies are used for modeling data in Knowledge Graphs (KGs) like the Linked Open Data Cloud and Wikidata. During their lifetime, vocabularies are subject to changes. New terms are coined, while existing terms are modified or deprecated. We first quantify the amount and frequency of changes in vocabularies. Subsequently, we investigate to which extend and when the changes are adopted in the evolution of KGs. We conduct our experiments on three large-scale KGs for which time-stamped information is available, namely the Billion Triples Challenge datasets, Dynamic Linked Data Observatory dataset, and Wikidata. Our results show that the change frequency of terms is rather low, but can have high impact due to the large amount of distributed graph data on the web. Furthermore, not all coined terms are used and most of the deprecated terms are still used by data publishers. The adoption time of terms coming from different vocabularies ranges from very fast (few days) to very slow (few years). Surprisingly, we could observe some adoptions before the vocabulary changes were published. Understanding the evolution of vocabulary terms is important to avoid wrong assumptions about the modeling status of data published on the web, which may result in difficulties when querying the data from distributed sources. |
关 键 词: | 建模知识图; 量化词汇; 数据建模 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-24:chenjy |
最后编审: | 2023-05-11:chenjy |
阅读次数: | 49 |