0


数据挖掘模型和实验的语义存储

Towards a semantic store of data mining models and experiments
课程网址: http://videolectures.net/sikdd2018_tolovski_data_mining_models/  
主讲教师: Ilin Tolovski
开课单位: Jožef Stefan研究所知识技术部
开课时间: 2018-11-23
课程语种: 英语
中文简介:
语义注释为存储的数据提供机器可读的结构。我们可以使用此结构基于显式和隐式派生的信息执行语义查询。在本文中,我们重点讨论了数据挖掘模型和实验背景下的语义标注、存储和查询方法。使用领域本体和词汇表中的术语进行语义注释的数据挖掘模型和实验,将使研究人员能够验证、复制和重用生成的人工制品,从而改进当前的研究。在这里,我们首先概述了语义web、数据挖掘领域本体和词汇、实验数据库、数据挖掘模型和实验的表示以及注释框架领域的最新方法。接下来,我们批判性地讨论所呈现的最新技术。此外,我们还提出了一个基于本体的系统,用于数据挖掘模型和实验的语义注释、存储和查询。最后,我们对本文进行了总结和展望。
课程简介: Semantic annotation provides machine readable structure to the stored data. We can use this structure to perform semantic querying, based on explicitly and implicitly derived information. In this paper, we focus on the approaches in semantic annotation, storage and querying in the context of data mining models and experiments. Having semantically annotated data mining models and experiments with terms from domain ontologies and vocabularies will enable researchers to verify, reproduce, and reuse the produced artefacts and with that improve the current research. Here, we first provide an overview of state-of-the-art approaches in the area of semantic web, data mining domain ontologies and vocabularies, experiment databases, representation of data mining models and experiments, and annotation frameworks. Next, we critically discuss the presented state-of-the-art. Further-more, we sketch our proposal for an ontology-based system for semantic annotation, storage, and querying of data mining models and experiments. Finally, we conclude the paper with a summary and future work.
关 键 词: 语义注释; 机器可读的结构; 隐式派生的信息执行语义查询; 数据挖掘模型; 数据挖掘领域本体
课程来源: 视频讲座网
数据采集: 2022-12-28:cyh
最后编审: 2023-05-15:cyh
阅读次数: 10