0


使用网络度量检测Web上的错误身份链接

Detecting Erroneous Identity Links on the Web using Network Metrics
课程网址: http://videolectures.net/iswc2018_raad_detecting_erroneous/  
主讲教师: Joe Raad
开课单位: Inria Saclay-法国
开课时间: 2018-11-22
课程语种: 英语
中文简介:
尽管发布链接数据的最佳实践鼓励重用现有的IRI,但通常使用多个名称来表示同一事物。每当使用多个名称时,都需要owl:sameAs语句来对齐它们。早在2009年的研究就发现了猫头鹰:sameAs链接的多次误用。因此,由于许多owl:sameAs链接是错误的,甚至引入了不一致性,所以链接数据的对齐目前被破坏。在本文中,我们展示了如何使用网络度量(如owl:sameAs图的社区结构)来检测此类(可能)错误语句。我们在LOD云的子集上评估我们的方法,该子集包含超过558M个owl:sameAs语句。
课程简介: Although best practices for publishing Linked Data encourage the re-use of existing IRIs, multiple names are often used to denote the same thing. Whenever multiple names are used, owl:sameAs statements are needed in order to align them. Studies that date back as far as 2009, have observed multiple misuses of owl:sameAs links. As a result, alignment of Linked Data is currently broken, since many owl:sameAs links are erroneous, even introducing inconsistencies. In this paper, we show how network metrics such as the community structure of the owl:sameAs graph can be used to detect such (possibly) erroneous statements. We evaluate our method on a subset of the LOD Cloud that contains over 558M owl:sameAs statements.
关 键 词: 发布链接数据; owl:sameAs链接; owl:sameAs语句
课程来源: 视频讲座网
数据采集: 2022-12-29:cyh
最后编审: 2022-12-29:cyh
阅读次数: 28