0


使用远程监督的深网从文本中诱导内隐关系

Inducing Implicit Relations from Text using Distantly Supervised Deep Nets
课程网址: http://videolectures.net/iswc2018_gliozzo_implicit_relations_dist...  
主讲教师: Alfio Massimiliano Gliozzo
开课单位: IBM研究
开课时间: 2018-10-23
课程语种: 英语
中文简介:
在本文中,我们介绍了Socrates,一种基于深度学习的自动知识库填充解决方案。Socrates不需要手动标记的数据来适应领域。相反,它利用部分填充的知识库和大量文本文档来训练深度神经网络模型。作为培训过程的结果,该系统学习如何识别来自不同来源的高度异构文档集合中实体之间的隐式关系,使其适合于从Web文档中进行大规模知识提取。我们在三个不同的基准上对系统进行了广泛的评估,表明我们始终在改进最先进的解决方案。值得注意的是,苏格拉底在2017年ISWC语义网络挑战赛上,在知识库总体和属性验证方面均排名第一。
课程简介: In this paper we present Socrates, a deep learning based solutions for Automated Knowledge Base Population. Socrates does not require hand labelled data for domain adaptation. Instead, it exploits a partially populated knowledge base and a large corpus of text documents to train a deep neural network model. As a result of the training process, the system learns how to identify implicit relations between entities across a highly heterogeneous set of documents from various sources, making it suitable for large-scale knowledge extraction from Web documents. We provide an extensive evaluation of the system across three different benchmarks, showing that we consistently improve over state of the art solutions. Remarkably, Socrates ranked first in both the knowledge base population and attribute validation track at the Semantic Web Challenge at ISWC 2017.
关 键 词: Socrates; 深度学习的自动知识库; ISWC语义网络挑战赛
课程来源: 视频讲座网
数据采集: 2022-12-30:cyh
最后编审: 2023-05-15:cyh
阅读次数: 26