0


代表性

Representativeness
课程网址: http://videolectures.net/iswc2018_soulet_representativeness_knowl...  
主讲教师: Arnaud Soulet
开课单位: 弗朗索瓦·拉伯莱大学
开课时间: 2018-11-22
课程语种: 英语
中文简介:
DBpedia、Wikidata和YAGO等知识库包含大量实体和事实。最近的几项工作归纳了这些知识库的规则或计算了它们的统计数据。大多数这些方法都是基于这样的假设,即数据是所研究宇宙的代表性样本。不幸的是,知识库是有偏见的,因为它们是从众包和可用数据库的机会聚集中建立起来的。本文旨在近似知识库中关系的代表性。为此,我们使用广义本福德定律,该定律表示关系事实所期望的分布。然后,我们计算必须添加的事实的最小数量,以使KB代表真实世界。实验表明,我们的无监督方法适用于大量关系。对于存在地面真相的数值关系,估计的代表性被证明是一个可靠的指标。
课程简介: Knowledge bases (KBs) such as DBpedia, Wikidata, and YAGO contain a huge number of entities and facts. Several recent works induce rules or calculate statistics on these KBs. Most of these methods are based on the assumption that the data is a representative sample of the studied universe. Unfortunately, KBs are biased because they are built from crowdsourcing and opportunistic agglomeration of available databases. This paper aims at approximating the representativeness of a relation within a knowledge base. For this, we use the Generalized Benford's law, which indicates the distribution expected by the facts of a relation. We then compute the minimum number of facts that have to be added in order to make the KB representative of the real world. Experiments show that our unsupervised method applies to a large number of relations. For numerical relations where ground truths exist, the estimated representativeness proves to be a reliable indicator.
关 键 词: 众包和可用数据库; 近似知识库; 知识库的规则
课程来源: 视频讲座网
数据采集: 2023-01-14:cyh
最后编审: 2023-01-16:cyh
阅读次数: 26