在线控制实验Online controlled experiments |
|
课程网址: | http://videolectures.net/kdd2018_lee_curse_estimation/ |
主讲教师: | Minyong R. Lee |
开课单位: | Airbnb |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 在线控制实验(即A/B测试)已成为大多数在线产品公司用来衡量任何新变化影响的标准框架。公司使用各种统计方法,包括假设检验和统计推断,以量化变更的业务影响并做出产品决策。如今,实验平台可以同时运行多达数百个甚至更多的实验。当进行一组实验时,通常会选择那些具有显著成功结果的产品。我们有兴趣了解推出的功能的总体影响。在本文中,我们研究了这个过程中的统计选择偏差,并提出了一种获得无偏估计量的校正方法。此外,我们在Airbnb的ERF平台(实验报告框架)上给出了一个实现示例,并讨论了解决这种偏差的最佳实践。 |
课程简介: | Online controlled experiments, or A/B testing, has been a standard framework adopted by most online product companies to measure the effect of any new change. Companies use various statistical methods including hypothesis testing and statistical inference to quantify the business impact of the changes and make product decisions. Nowadays, experimentation platforms can run as many as hundreds or even more experiments concurrently. When a group of experiments is conducted, usually the ones with significant successful results are chosen to be launched into the product. We are interested in learning the aggregated impact of the launched features. In this paper, we investigate a statistical selection bias in this process and propose a correction method of getting an unbiased estimator. Moreover, we give an implementation example at Airbnb’s ERF platform (Experiment Reporting Framework) and discuss the best practices to account for this bias. |
关 键 词: | 在线控制实验; 大多数在线产品公司; 量化变更的业务影响; Airbnb的ERF平台 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-24:cyh |
最后编审: | 2023-05-15:cyh |
阅读次数: | 43 |