直接求解归一化割的大规模数据光谱聚类Spectral Clustering of Large-scale Data by Directly Solving Normalized Cut |
|
课程网址: | http://videolectures.net/kdd2018_chen_clustering_normalized/ |
主讲教师: | Xiaojun Chen |
开课单位: | 深圳大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 在过去的几十年中,已经提出了许多光谱聚类算法。然而,它们的高计算复杂性阻碍了它们在大规模数据上的应用。而且,它们大多使用两步方法来获得最优解,这可能会通过直接解决原始问题而偏离解。在本文中,我们提出了一种新的优化算法,即直接归一化切割(DNC),以直接优化归一化切割模型。DNC具有二次时间复杂度,与传统光谱聚类的三次时间复杂率相比,这是一个显著的降低。为了处理大规模数据,通过使用基于锚的策略扩展DNC,提出了一种具有线性时间和空间复杂性的快速归一化切割(FNC)方法。在新方法中,我们首先寻找一组锚点,然后通过计算锚点与整个数据集之间的距离来构造代表性的相似度矩阵。为了找到最能代表整个数据集的高质量锚点,我们提出了平衡k均值(BKM)来将数据集划分为平衡聚类,并使用聚类中心作为锚点。然后使用DNC从代表性相似度矩阵中获得最终聚类结果。在合成数据和真实世界数据集上进行了一系列实验 |
课程简介: | During the past decades, many spectral clustering algorithms have been proposed. However, their high computational complexities hinder their applications on large-scale data. Moreover, most of them use a two-step approach to obtain the optimal solution, which may deviate from the solution by directly solving the original problem. In this paper, we propose a new optimization algorithm, namely Direct Normalized Cut (DNC), to directly optimize the normalized cut model. DNC has a quadratic time complexity, which is a significant reduction comparing with the cubic time complexity of the traditional spectral clustering. To cope with large-scale data, a Fast Normalized Cut (FNC) method with linear time and space complexities is proposed by extending DNC with an anchor-based strategy. In the new method, we first seek a set of anchors and then construct a representative similarity matrix by computing distances between the anchors and the whole data set. To find high quality anchors that best represent the whole data set, we propose a Balanced k-means (BKM) to partition a data set into balanced clusters and use the cluster centers as anchors. Then DNC is used to obtain the final clustering result from the representative similarity matrix. A series of experiments were conducted on both synthetic data and real-world data sets, and the experimental |
关 键 词: | 光谱聚类算法; 高计算复杂性; 传统光谱聚类; 线性时间和空间复杂性 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-24:cyh |
最后编审: | 2023-01-24:cyh |
阅读次数: | 38 |