在最优子空间中发现非冗余K均值聚类Discovering Non‑Redundant K‑means Clusterings in Optimal Subspaces |
|
课程网址: | http://videolectures.net/kdd2018_mautz_discovering_clusterings/ |
主讲教师: | Dominik Mautz |
开课单位: | 马克西米利安大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 高维空间中的巨大对象集合通常可以以多种方式聚集,例如,对象可以通过其形状或颜色聚集。每个分组代表数据集的不同视图。非冗余集群的新研究领域解决了这类问题。在本文中,我们遵循的方法是,在高维空间的不同的、任意定向的子空间中可能存在不同的、非冗余的类k均值聚类。我们假设这些子空间(以及可选的没有任何簇结构的另一噪声空间)彼此正交。这一假设使得能够对非冗余聚类问题进行特别严格的数学处理,从而实现一种特别有效的算法,我们称之为Nr Kmeans(非冗余k均值)。理论上和大量实验都证明了我们算法的优越性。 |
课程简介: | A huge object collection in high-dimensional space can often be clustered in more than one way, for instance, objects could be clustered by their shape or alternatively by their color. Each grouping represents a different view of the data set. The new research field of non-redundant clustering addresses this class of problems. In this paper, we follow the approach that different, non-redundant k-means-like clusterings may exist in different, arbitrarily oriented subspaces of the high-dimensional space. We assume that these subspaces (and optionally a further noise space without any cluster structure) are orthogonal to each other. This assumption enables a particularly rigorous mathematical treatment of the non-redundant clustering problem and thus a particularly efficient algorithm, which we call Nr-Kmeans (for non-redundant k-means). The superiority of our algorithm is demonstrated both theoretically, as well as in extensive experiments. |
关 键 词: | 巨大对象集合; 形状或颜色聚集; 非冗余k均值; 非冗余的类k均值聚类 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-28:cyh |
最后编审: | 2023-01-28:cyh |
阅读次数: | 30 |