基于FPGA的全球土地覆盖分类Planet-Scale Land Cover Classification With FPGAs |
|
课程网址: | http://videolectures.net/kdd2018_sirosh_cover_classification/ |
主讲教师: | Joseph Sirosh |
开课单位: | 微软 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | AI for Earth将微软的云和AI工具交给那些致力于解决全球环境挑战的人。土地覆盖图是微软人工智能地球计划的一部分,该计划旨在从根本上改变社会监测、建模和最终管理地球自然资源的方式。为了支持土地覆盖测绘工作,DNN用于使用国家农业图像计划(NAIP)的数十TB高分辨率卫星图像进行土地利用分类。然而,深度神经网络(DNN)在经济高效地推断和部署在具有低延迟和性价比的大规模在线服务方面具有挑战性。Microsoft Project Brainwave是一种硬件架构,旨在实现高性能实时AI计算,该架构部署在现场可编程阵列(FPGA)上。这一波硬件创新将从根本上改变DNN大规模使用的延迟和性价比。在本节课中,我们将介绍如何在微软内部使用FPGA,以及如何利用FPGA的力量进行实时人工智能。我们将分享如何在十分钟内以每秒415000次推断的速度对来自NAIP的20 TB高分辨率卫星图像进行土地覆盖分类的秘密。 |
课程简介: | AI for Earth puts Microsoft’s cloud and AI tools in the hands of those working to solve global environmental challenges. Land cover mapping is part of Microsoft’s AI for Earth program, which was created in order to fundamentally change the way that society monitors, models, and ultimately manages Earth’s natural resources. To power the land cover mapping work, DNNs are used to perform land use classification using tens of terabytes of high-resolution satellite images from National Agriculture Imagery Program (NAIP). However, Deep Neural Networks (DNNs) are challenging to infer cost-effectively, and deploy in large-scale online services with low latencies and price/performance. Microsoft Project Brainwave is a hardware architecture designed to enable high performance real-time AI computations, and the architecture is deployed on field programmable arrays (FPGAs). This wave of hardware innovation will fundamentally transform latencies and price-performance for large scale use of DNNs. In this session, we will walkthrough how FPGAs are used within Microsoft, and how we can tap the power of FPGAs for real-time AI. We will share the secrets of how we are able to perform land cover classification on 20 terabytes of high-resolutions satellite images from NAIP in ten minutes, at the rate of over 415,000 inferences/second. |
关 键 词: | AI for Earth; 微软的云和AI工具; 国家农业图像计划; 现场可编程阵列 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-28:cyh |
最后编审: | 2023-01-28:cyh |
阅读次数: | 39 |