0


Twitter中用户评测的动态嵌入

Dynamic Embeddings for User Profiling in Twitter
课程网址: http://videolectures.net/kdd2018_zhang_user_profiling/  
主讲教师: Xiangliang Zhang
开课单位: 阿卜杜拉国王科技大学(KAUST)
开课时间: 2018-11-23
课程语种: 英语
中文简介:
在本文中,我们研究了Twitter中的动态用户配置问题。我们通过提出动态用户和词嵌入模型(DUWE)、可扩展黑箱变分推理算法和流式关键字多样化模型(SKDM)来解决这个问题。DUWE随着时间的推移动态跟踪用户和单词的语义表示,并对其在同一空间中的嵌入进行建模,以便有效地测量它们的相似性。我们的推理算法与凸目标函数一起工作,确保了学习嵌入的鲁棒性。SKDM旨在检索顶级K相关和多样化的关键词,以描述用户的动态兴趣。在Twitter数据集上的实验表明,我们提出的嵌入算法优于最先进的非动态和动态嵌入和主题模型。
课程简介: In this paper, we study the problem of dynamic user profiling in Twitter. We address the problem by proposing a dynamic user and word embedding model (DUWE), a scalable black-box variational inference algorithm, and a streaming keyword diversification model (SKDM). DUWE dynamically tracks the semantic representations of users and words over time and models their embeddings in the same space so that their similarities can be effectively measured. Our inference algorithm works with a convex objective function that ensures the robustness of the learnt embeddings. SKDM aims at retrieving top-K relevant and diversified keywords to profile users’ dynamic interests. Experiments on a Twitter dataset demonstrate that our proposed embedding algorithms outperform state-of-the-art non-dynamic and dynamic embedding and topic models.
关 键 词: 动态用户配置问题; 动态用户和词嵌入模型; 流式关键字多样化模型; 动态嵌入和主题模型
课程来源: 视频讲座网
数据采集: 2023-01-28:cyh
最后编审: 2023-01-28:cyh
阅读次数: 51