R2SDH:鲁棒旋转监督离散散列R2SDH: Robust Rotated Supervised Discrete Hashing |
|
课程网址: | http://videolectures.net/kdd2018_li_robust_hashing/ |
主讲教师: | Piotr Rudol |
开课单位: | 林克平大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 基于学习的哈希最近由于其支持高效存储和检索高维数据(如图像、视频和文档)的能力而受到了广泛关注。在本文中,我们通过扩展先前关于“监督离散哈希”(SDH)的工作,提出了一种基于学习的哈希算法,称为“鲁棒旋转监督离散哈希(R2 SDH)”。在R 2 SDH中,为了实现更好的鲁棒性,采用了一致性来代替SDH中的最小二乘回归(LSR)模型。此外,考虑到常用的距离度量(如余弦和欧几里德距离)对旋转变换是不变的,旋转被集成到SDH中使用的原始零一标记矩阵中,作为额外的自由度,以提高灵活性而不牺牲准确性。通过优化过程学习旋转矩阵。在三个图像数据集(MNIST、CIFAR-10和NUS-WIDE)上的实验结果证实,R 2 SDH通常优于SDH。 |
课程简介: | Learning-based hashing has recently received considerable attentions due to its capability of supporting efficient storage and retrieval of high-dimensional data such as images, videos, and documents. In this paper, we propose a learning-based hashing algorithm called “Robust Rotated Supervised Discrete Hashing” (R 2 SDH), by extending the previous work on “Supervised Discrete Hashing” (SDH). In R 2 SDH, correntropy is adopted to replace the least square regression (LSR) model in SDH for achieving better robustness. Furthermore, considering the commonly used distance metrics such as cosine and Euclidean distance are invariant to rotational transformation, rotation is integrated into the original zero-one label matrix used in SDH, as additional freedom to promote flexibility without sacrificing accuracy. The rotation matrix is learned through an optimization procedure. Experimental results on three image datasets (MNIST, CIFAR-10, and NUS-WIDE) confirm that R 2 SDH generally outperforms SDH. |
关 键 词: | 基于学习的哈希; 鲁棒旋转监督离散哈希; 最小二乘回归; 图像数据集 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-29:cyh |
最后编审: | 2023-01-30:cyh |
阅读次数: | 17 |