具有规则等价性的深度递归网络嵌入Deep Recursive Network Embedding with Regular Equivalence |
|
课程网址: | http://videolectures.net/kdd2018_tu_deep_equivalence/ |
主讲教师: | Ke Tu |
开课单位: | 清华大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 网络嵌入旨在保持嵌入空间中的顶点相似性。现有方法通常通过节点之间的直接链接或公共邻域来定义相似性,即结构等效。然而,位于网络不同部分的顶点可能具有相似的角色或位置,即规则等价,这在很大程度上被网络嵌入文献所忽略。规则等价是以递归的方式定义的,即两个规则等价的顶点具有同样规则等价的网络邻居。因此,我们提出了一种名为深度递归网络嵌入(DRNE)的新方法来学习具有规则等价性的网络嵌入。更具体地说,我们提出了一种层规范化LSTM,通过以递归方式聚合其邻域的表示来表示每个节点。我们从理论上证明了一些流行的和典型的中心性度量是我们模型的最优解,这些度量与规则等价性一致。经验结果也证明了这一点,即学习的节点表示可以很好地预测规则等价性指数和相关的中心性得分。此外,学习的节点表示可以直接用于网络中的结构角色分类等最终应用,实验结果表明,我们的方法可以始终优于基于中心性的方法和其他最先进的网络嵌入方法。 |
课程简介: | Network embedding aims to preserve vertex similarity in an embedding space. Existing approaches usually define the similarity by direct links or common neighborhoods between nodes, i.e. structural equivalence. However, vertexes which reside in different parts of the network may have similar roles or positions, i.e. regular equivalence, which is largely ignored by the literature of network embedding. Regular equivalence is defined in a recursive way that two regularly equivalent vertexes have network neighbors which are also regularly equivalent. Accordingly, we propose a new approach named Deep Recursive Network Embedding (DRNE) to learn network embeddings with regular equivalence. More specifically, we propose a layer normalized LSTM to represent each node by aggregating the representations of their neighborhoods in a recursive way. We theoretically prove that some popular and typical centrality measures which are consistent with regular equivalence are optimal solutions of our model. This is also demonstrated by empirical results that the learned node representations can well predict the indexes of regular equivalence and related centrality scores. Furthermore, the learned node representations can be directly used for end applications like structural role classification in networks, and the experimental results show that our method can consistently outperform centrality-based methods and other state-of-the-art network embedding methods. |
关 键 词: | 网络嵌入; 嵌入空间中的顶点相似性; 深度递归网络嵌; 典型的中心性度量 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-30:cyh |
最后编审: | 2023-01-31:cyh |
阅读次数: | 32 |