分层分类感知网络嵌入Hierarchical Taxonomy Aware Network Embedding |
|
课程网址: | http://videolectures.net/kdd2018_ma_hierarchical_taxonomy/ |
主讲教师: | Jianxin Ma |
开课单位: | 清华大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 网络嵌入学习顶点的低维表示,同时保持网络结构所反映的顶点间相似性。顶点的邻域结构通常与底层的分层分类法密切相关——顶点与可以分层组织的连续更广泛的类别相关联。不同级别的类别反映了不同粒度的相似性。因此,分类的层次结构要求学习的表示支持多个粒度级别。此外,分层分类法使信息能够通过顶点的公共类别在顶点之间流动,从而为缓解数据稀缺提供了一种有效的机制。然而,将分层分类法纳入网络嵌入带来了巨大的挑战(因为分类法通常是未知的),并且它被现有方法所忽略。在本文中,我们提出了NetHiex,这是一种网络嵌入模型,它捕获了潜在的HIERARCAL数据经济。在我们的模型中,顶点表示由与不同粒度的类别相关联的多个组件组成。顶点和类别的表示都是共正则化的。我们使用嵌套的中餐馆流程来指导搜索最合理的分层分类法。然后通过伯努利分布从潜在表示中恢复网络结构。整个模型统一在非参数概率框架内。针对优化问题,提出了一种可扩展的期望最大化算法。经验结果表明,NetHiex在性能方面取得了显著的进步。 |
课程简介: | Network embedding learns the low-dimensional representations for vertices, while preserving the inter-vertex similarity reflected by the network structure. The neighborhood structure of a vertex is usually closely related with an underlying hierarchical taxonomy— the vertices are associated with successively broader categories that can be organized hierarchically. The categories of different levels reflects similarity of different granularity. The hierarchy of the taxonomy therefore requires that the learned representations support multiple levels of granularity. Moreover, the hierarchical taxonomy enables the information to flow between vertices via their common categories, and thus provides an effective mechanism for alleviating data scarcity. However, incorporating the hierarchical taxonomy into network embedding poses a great challenge (since the taxonomy is generally unknown), and it is neglected by the existing approaches. In this paper, we propose NetHiex, a NETwork embedding model that captures the latent HIErarchical taXonomy. In our model, a vertex representation consists of multiple components that are associated with categories of different granularity. The representations of both the vertices and the categories are co-regularized. We employ the nested Chinese restaurant process to guide the search of the most plausible hierarchical taxonomy. The network structure is then recovered from the latent representations via a Bernoulli distribution. The whole model is unified within a nonparametric probabilistic framework. A scalable expectation-maximization algorithm is derived for optimization. Empirical results demonstrate that NetHiex achieves significant performance gain over the state-of-arts. |
关 键 词: | 网络嵌入学习顶点; 可扩展的期望最大化算法; 嵌套的中餐馆流程 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-30:cyh |
最后编审: | 2023-01-31:cyh |
阅读次数: | 33 |