NetWalk:一种灵活的动态网络异常检测深度嵌入方法NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks |
|
课程网址: | http://videolectures.net/kdd2018_yu_netwalk_approach/ |
主讲教师: | Wenchao Yu |
开课单位: | 加州大学洛杉矶分校 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 大规模和动态的网络出现在许多实际应用中,如社交媒体、安全和公共卫生。给定一个进化网络,以实时的方式检测结构异常是至关重要的,例如其“行为”偏离网络基本大多数的顶点和边。最近,网络嵌入被证明是学习网络中顶点的低维表示的一个强大工具,可以捕获和保存网络结构。然而,大多数现有的网络嵌入方法是为静态网络设计的,因此可能不完全适合于网络表示必须不断更新的动态环境。在本文中,我们提出了一种新的方法,即NetWalk,用于通过学习网络表示来检测动态网络中的异常,网络表示可以随着网络的演变而动态更新。我们首先通过团嵌入将动态网络的顶点编码为向量表示,这共同最小化了从动态网络导出的每个行走的顶点表示的成对距离,以及用作全局正则化的深度自动编码器重构误差。可以使用储层采样以恒定的空间要求计算矢量表示。在学习到的低维顶点表示的基础上,采用基于聚类的技术来增量和动态地检测网络异常。与现有方法相比,NetWalk具有几个优点:1)网络嵌入可以动态更新,2)流式网络节点和边缘可以在恒定内存空间使用的情况下高效编码,3)。4)可以实时检测网络异常。在四个真实数据集上的大量实验证明了NetWalk的有效性。 |
课程简介: | Massive and dynamic networks arise in many practical applications such as social media, security and public health. Given an evolutionary network, it is crucial to detect structural anomalies, such as vertices and edges whose “behaviors” deviate from underlying majority of the network, in a real-time fashion. Recently, network embedding has proven a powerful tool in learning the low-dimensional representations of vertices in networks that can capture and preserve the network structure. However, most existing network embedding approaches are designed for static networks, and thus may not be perfectly suited for a dynamic environment in which the network representation has to be constantly updated. In this paper, we propose a novel approach, NetWalk, for anomaly detection in dynamic networks by learning network representations which can be updated dynamically as the network evolves. We first encode the vertices of the dynamic network to vector representations by clique embedding, which jointly minimizes the pairwise distance of vertex representations of each walk derived from the dynamic networks, and the deep autoencoder reconstruction error serving as a global regularization. The vector representations can be computed with constant space requirements using reservoir sampling. On the basis of the learned low-dimensional vertex representations, a clustering-based technique is employed to incrementally and dynamically detect network anomalies. Compared with existing approaches, NetWalk has several advantages: 1) the network embedding can be updated dynamically, 2) streaming network nodes and edges can be encoded efficiently with constant memory space usage, 3). flexible to be applied on different types of networks, and 4) network anomalies can be detected in realtime. Extensive experiments on four real datasets demonstrate the effectiveness of NetWalk. |
关 键 词: | 大规模和动态的网络; 捕获和保存网络结构; 检测动态网络; 动态网络的顶点编码 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-30:cyh |
最后编审: | 2023-01-31:cyh |
阅读次数: | 30 |