学习行为成功的多类型项目集嵌入Multi-Type Itemset Embedding for Learning Behaviour Success |
|
课程网址: | http://videolectures.net/kdd2018_wang_multi-type_success/ |
主讲教师: | Daheng Wang |
开课单位: | 圣母大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 情境行为建模使用来自多个情境的数据来发现预测分析的模式。然而,现有的行为预测模型在扩展大规模数据集时常常面临挑战。在这项工作中,我们将行为表述为一组不同类型的上下文项(如决策者、操作员、目标和资源),将可观察项集视为行为成功,并提出了一种新的可扩展方法“多类型项集嵌入”,以学习保持成功结构的上下文项表示。与大多数现有的嵌入方法不同,我们的方法从行为与其一个项目之间的连接中学习成对的接近度,我们的方式从行为的所有多类型项目之间的交互中集体学习项目嵌入,基于此,我们开发了一个新的框架Learnsc,用于(1)预测任何一组项目的成功率,以及(2)找出当被合并到项目集中时最大化成功概率的互补项目。大量实验证明了所提出框架的有效性和合理性。 |
课程简介: | Contextual behavior modeling uses data from multiple contexts to discover patterns for predictive analysis. However, existing behavior prediction models often face diculties when scaling for massive datasets. In this work, we formulate a behavior as a set of context items of dierent types (such as decision makers, operators, goals and resources), consider an observable itemset as a behavior success, and propose a novel scalable method, “multi-type itemset embedding”, to learn the context items’ representations preserving the success structures. Unlike most of existing embedding methods that learn pair-wise proximity from connection between a behavior and one of its items, our method learns item embeddings collectively from interaction among all multi-type items of a behavior, based on which we develop a novel framework, LearnSuc, for (1) predicting the success rate of any set of items and (2) nding complementary items which maximize the probability of success when incorporated into an itemset. Extensive experiments demonstrate both eectiveness and ecency of the proposed framework. |
关 键 词: | 情境行为建模; 多个情境的数据; 发现预测分析的模式; 新的框架Learnsc |
课程来源: | 视频讲座网 |
数据采集: | 2023-02-03:cyh |
最后编审: | 2023-02-03:cyh |
阅读次数: | 29 |