0


xDepFM:为推荐系统组合显式和隐式特征交互

xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
课程网址: http://videolectures.net/kdd2018_lian_xDeepFM/  
主讲教师: Jianxun Lian
开课单位: 中国科学技术大学
开课时间: 2018-11-23
课程语种: 英语
中文简介:
组合特性对于许多商业模型的成功至关重要。由于网络规模系统中原始数据的种类、数量和速度,手工制作这些功能通常会带来高昂的成本。基于因子分解的模型以向量积的形式度量相互作用,可以自动学习组合特征的模式,也可以推广到不可见的特征。随着深度神经网络(DNN)在各个领域的巨大成功,最近研究人员提出了几种基于DNN的因子分解模型来学习低阶和高阶特征交互。尽管从数据中学习任意函数的能力很强,但普通DNN隐式地在逐位级别生成特征交互。在本文中,我们提出了一种新的压缩交互网络(CIN),该网络旨在以显式方式在向量级生成特征交互。我们表明,CIN与卷积神经网络(CNN)和递归神经网络(RNN)共享一些功能。我们进一步将CIN和经典DNN组合成一个统一的模型,并将这个新模型命名为eXtreme Deep Factorization Machine(xDepFM)。一方面,xDepFM能够明确地学习某些有界度的特征交互;另一方面,它可以隐式地学习任意的低阶和高阶特征交互。我们在三个真实世界数据集上进行了全面的实验。我们的结果表明,xDepFM优于最先进的模型。
课程简介: Combinatorial features are essential for the success of many commercial models. Manually crafting these features usually comes with high cost due to the variety, volume and velocity of raw data in web-scale systems. Factorization based models, which measure interactions in terms of vector product, can learn patterns of combinatorial features automatically and generalize to unseen features as well. With the great success of deep neural networks (DNNs) in various fields, recently researchers have proposed several DNN-based factorization model to learn both low- and high-order feature interactions. Despite the powerful ability of learning an arbitrary function from data, plain DNNs generate feature interactions implicitly and at the bit-wise level. In this paper, we propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level. We show that the CIN share some functionalities with convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We further combine a CIN and a classical DNN into one unified model, and named this new model eXtreme Deep Factorization Machine (xDeepFM). On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly. We conduct comprehensive experiments on three real-world datasets. Our results demonstrate that xDeepFM outperforms state-of-the-art models. 
关 键 词: 商业模型; 基于因子分解的模型; 压缩交互网络; 人工智能
课程来源: 视频讲座网
数据采集: 2023-02-09:cyh
最后编审: 2023-02-09:cyh
阅读次数: 30