0


使用LSTM和非参数动态阈值检测航天器异常

Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding
课程网址: http://videolectures.net/kdd2018_hundman_detecting_spacecraft_ano...  
主讲教师: Kyle Hundman
开课单位: NASA
开课时间: 2018-11-23
课程语种: 英语
中文简介:
随着航天器发回越来越多的遥测数据,需要改进异常检测系统,以减轻操作工程师的监控负担,降低操作风险。目前的航天器监测系统仅针对异常类型的子集,由于涉及规模和复杂性的挑战,通常需要昂贵的专家知识来开发和维护。我们使用来自土壤湿度主动被动(SMAP)卫星和火星科学实验室(MSL)探测车好奇号的专家标记遥测异常数据,证明了长短期记忆(LSTM)网络(一种递归神经网络(RNN))在克服这些问题方面的有效性。我们还提出了一种互补的无监督和非参数异常阈值方法,该方法是在SMAP异常检测系统的试点实施过程中开发的,并提供了假阳性缓解策略以及开发过程中的其他关键改进和经验教训。
课程简介: As spacecraft send back increasing amounts of telemetry data, improved anomaly detection systems are needed to lessen the monitoring burden placed on operations engineers and reduce operational risk. Current spacecraft monitoring systems only target a subset of anomaly types and often require costly expert knowledge to develop and maintain due to challenges involving scale and complexity. We demonstrate the effectiveness of Long Short-Term Memory (LSTMs) networks, a type of Recurrent Neural Network (RNN), in overcoming these issues using expert-labeled telemetry anomaly data from the Soil Moisture Active Passive (SMAP) satellite and the Mars Science Laboratory (MSL) rover, Curiosity. We also propose a complementary unsupervised and nonparametric anomaly thresholding approach developed during a pilot implementation of an anomaly detection system for SMAP, and offer false positive mitigation strategies along with other key improvements and lessons learned during development.
关 键 词: 改进异常检测系统; 火星科学实验室; 假阳性缓解策略; 长短期记忆(LSTM)网络
课程来源: 视频讲座网
数据采集: 2023-02-09:cyh
最后编审: 2023-02-09:cyh
阅读次数: 115