0


使用机器学习评估和预防水管破裂的风险

Using Machine Learning to Assess the Risk of and Prevent Water Main Breaks
课程网址: http://videolectures.net/kdd2018_kumar_water_main_breaks/  
主讲教师: Avishek Kumar
开课单位: 芝加哥大学数据科学和公共政策中心
开课时间: 2018-11-23
课程语种: 英语
中文简介:
美国的水基础设施开始显示其老化,特别是通过水管断裂。主要的休息时间会对居民和企业的日常生活造成重大干扰。纽约州锡拉库扎市(和大多数城市一样)的供水系统故障是被动处理的,而不是主动处理的。在资源有限的情况下进行主动维护的一个障碍是该市无法正确地优先分配其资源。我们建立了一个机器学习系统来评估水管破裂的风险。使用水管发生故障的历史数据、管道描述符和其他数据源,我们评估了几个模型预测未来三年破裂的能力。我们的结果表明,我们使用梯度增强决策树的系统在几种算法和专家启发式中表现最好,达到了0.62的1%([电子邮件保护])的精度。我们的模型优于随机基线(P@10.08)和专家启发法,如水主年龄(P@10.10)和过去主要断裂的历史(P@1该模型目前部署在雪城。我们正在进行一项试点,通过使用截至2015年底的数据计算2016-2018年期间每个城市街区的故障风险,截至2017年底,我们风险最大的52条干线已出现42次故障。这是雪城在改善基础设施方面的一项成功举措,我们相信这种方法可以应用于其他城市。
课程简介: Water infrastructure in the United States is beginning to show its age, particularly through water main breaks. Main breaks cause major disruptions in everyday life for residents and businesses. Water main failures in Syracuse, N.Y. (as in most cities) are handled reactively rather than proactively. A barrier to proactive maintenance with limited resources is the city’s inability to properly prioritize the allocation of its resources. We built a Machine Learning system to assess the risk of a water mains breaking. Using historical data on which mains have failed, descriptors of pipes, and other data sources, we evaluated several models’ abilities to predict breaks three years into the future. Our results show that our system using gradient boosted decision trees performed best out of several algorithms and expert heuristics, achieving precision at 1% ([email protected]) of 0.62. Our model outperforms a random baseline (P@1 of 0.08) and expert heuristics such as water main age (P@1 of 0.10) and history of past main breaks (P@1 of 0.48). The model is currently deployed in the City of Syracuse. We are conducting a pilot by calculating the risk of failure for each city block over the period 2016-2018 using data up to the end of 2015 and, as of the end of 2017, there have been 42 breaks on our riskiest 52 mains. This has been a successful initiative for the city of Syracuse in improving its infrastructure and we believe this approach can be applied to other cities.
关 键 词: 美国的水基础设施; 供水系统故障; 水管发生故障; 评估水管破裂的风险
课程来源: 视频讲座网
数据采集: 2023-02-09:cyh
最后编审: 2023-02-09:cyh
阅读次数: 30