0


使用深度时态多实例学习解释航空安全事件

Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning
课程网址: http://videolectures.net/kdd2018_das_janakiraman_aviation_safety/  
主讲教师: Kamalika Das
开课单位: NASA艾姆斯研究中心
开课时间: 2018-11-23
课程语种: 英语
中文简介:
虽然航空事故很少发生,但安全事故发生的频率更高,需要进行仔细分析,以及时发现和减轻风险。使用运营数据分析安全事故并产生基于事件的解释对航空公司以及美国联邦航空管理局(FAA)等管理机构来说是非常宝贵的。然而,这项任务具有挑战性,因为挖掘多维异构时间序列数据所涉及的复杂性,缺乏飞行中事件的时间步长注释,以及缺乏对大量事件进行分析的可扩展工具。在这项工作中,我们提出了一种前兆挖掘算法,该算法识别多维时间序列中与安全事件相关的事件。前体对系统健康和安全监测以及解释和预测安全事件具有重要价值。当前的方法对高维时间序列数据的可扩展性较差,并且在捕获时间行为方面效率低下。我们提出了一种结合多实例学习(MIL)和深度递归神经网络(DRNN)的方法,以利用MIL使用弱监督数据学习的能力和DRNN建模时间行为的能力。我们描述了采用MIL方法的算法、数据、直觉,并对所提出的算法与基线模型进行了比较分析。我们还使用商业航空公司的数据讨论了该模型在实际航空安全问题中的应用,并讨论了模型的能力和缺点,最后对可能的部署方向做了一些评论。
课程简介: Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL’s ability to learn using weakly supervised data and DRNN’s ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model’s abilities and shortcomings, with some final remarks about possible deployment directions.
关 键 词: 美国联邦航空管理局; 对系统健康和安全监测; 结合多实例学习; DRNN建模时间行为的能力
课程来源: 视频讲座网
数据采集: 2023-02-09:cyh
最后编审: 2023-02-09:cyh
阅读次数: 25