使用结构注意的图形分类Graph Classification using Structural Attention |
|
课程网址: | http://videolectures.net/kdd2018_lee_graph_classification/ |
主讲教师: | John Boaz Lee |
开课单位: | 伍斯特理工学院 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 图分类是一个在许多不同领域中实际应用的问题。为了解决这个问题,人们通常会计算某些图表统计信息(即图表特征),以帮助区分不同类别的图表。在计算这些特征时,大多数现有方法都会处理整个图形。例如,在基于图的方法中,处理整个图以获得不同图或子图的总数。然而,在许多现实世界的应用中,图可能是有噪声的,而区分模式仅限于图中的某些区域。在这项工作中,我们研究了基于注意力的图分类问题。注意力的使用使我们能够专注于图中较小但信息丰富的部分,避免图中其他部分的噪音。我们提出了一种新的RNN模型,称为图注意模型(GAM),它通过自适应地选择一系列“信息”节点,仅处理图的一部分。在多个真实世界数据集上的实验结果表明,尽管我们的方法仅限于图的一部分,但所提出的方法与各种已知的图分类方法相比具有竞争力。 |
课程简介: | Graph classification is a problem with practical applications in many different domains. To solve this problem, one usually calculates certain graph statistics (i.e., graph features) that help discriminate between graphs of different classes. When calculating such features, most existing approaches process the entire graph. In a graphletbased approach, for instance, the entire graph is processed to get the total count of different graphlets or subgraphs. In many real-world applications, however, graphs can be noisy with discriminative patterns confined to certain regions in the graph only. In this work, we study the problem of attention-based graph classification. The use of attention allows us to focus on small but informative parts of the graph, avoiding noise in the rest of the graph. We present a novel RNN model, called the Graph Attention Model (GAM), that processes only a portion of the graph by adaptively selecting a sequence of “informative” nodes. Experimental results on multiple real-world datasets show that the proposed method is competitive against various well-known methods in graph classification even though our method is limited to only a portion of the graph. |
关 键 词: | 实际应用; 图注意模型; 真实世界 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-05:chenjy |
最后编审: | 2023-03-05:chenjy |
阅读次数: | 31 |