0


洪水范围图的地理隐马尔可夫树

Geographical Hidden Markov Tree for Flood Extent Mapping
课程网址: http://videolectures.net/kdd2018_jiang_geographical_markov/  
主讲教师: Zhe Jiang
开课单位: 阿拉巴马大学
开课时间: 2018-11-23
课程语种: 英语
中文简介:
洪水范围测绘在灾害管理和国家水资源预测中发挥着至关重要的作用。不幸的是,传统的分类方法常常受到噪声、障碍和光谱特征中的异质性以及跨类别标签的隐式各向异性空间依赖性的影响。在本文中,我们提出了地理隐马尔可夫树,这是一种概率图形模型,它将常见的隐马尔可夫模型从一维序列推广到二维地图。各向异性的空间依赖性被合并到具有反向树结构的隐藏类层中。我们还研究了反向树构造、模型参数学习和类推理的计算算法。对合成数据集和真实数据集的广泛评估表明,所提出的模型在洪水映射方面优于多个基线,并且我们的算法在大数据大小上是可扩展的。
课程简介: Flood extent mapping plays a crucial role in disaster management and national water forecasting. Unfortunately, traditional classification methods are often hampered by the existence of noise, obstacles and heterogeneity in spectral features as well as implicit anisotropic spatial dependency across class labels. In this paper, we propose geographical hidden Markov tree, a probabilistic graphical model that generalizes the common hidden Markov model from a one dimensional sequence to a two dimensional map. Anisotropic spatial dependency is incorporated in the hidden class layer with a reverse tree structure. We also investigate computational algorithms for reverse tree construction, model parameter learning and class inference. Extensive evaluations on both synthetic and real world datasets show that proposed model outperforms multiple baselines in flood mapping, and our algorithms are scalable on large data sizes.
关 键 词: 灾害管理; 概率图形模型; 广泛评估
课程来源: 视频讲座网
数据采集: 2023-03-06:chenjy
最后编审: 2023-03-06:chenjy
阅读次数: 27