自然语言理解:基础和最新技术Natural Language Understanding: Foundations and State-of-the-Art |
|
课程网址: | http://videolectures.net/icml2015_liang_language_understanding/ |
主讲教师: | Percy Liang |
开课单位: | 斯坦福大学计算机科学系 |
开课时间: | 2015-12-05 |
课程语种: | 英语 |
中文简介: | 构建能够理解人类语言的系统——能够回答问题、遵循指令、进行对话——自人工智能早期以来一直是一个长期的挑战。由于最近机器学习的进步,人们对这项艰巨的任务再次产生了兴趣。一个主要的问题是人们如何表示和学习自然语言的语义(含义),对于这个问题只有部分答案。本教程的目标是(i)描述任何系统都必须解决的语言和统计挑战;以及(ii)描述前沿方法的类型和剩余的开放性问题。主题包括分布语义学(如词向量)、框架语义学(如语义角色标注)、模型理论语义学(如语义解析)、上下文的作用、基础、神经网络、潜在变量和推理。我们希望,这种统一的展示将阐明这一领域,并表明这是机器学习社区参与自然语言理解问题的激动人心的时刻。 |
课程简介: | Building systems that can understand human language—being able to answer questions, follow instructions, carry on dialogues—has been a long-standing challenge since the early days of AI. Due to recent advances in machine learning, there is again renewed interest in taking on this formidable task. A major question is how one represents and learns the semantics (meaning) of natural language, to which there are only partial answers. The goal of this tutorial is (i) to describe the linguistic and statistical challenges that any system must address; and (ii) to describe the types of cutting edge approaches and the remaining open problems. Topics include distributional semantics (e.g., word vectors), frame semantics (e.g., semantic role labeling), model-theoretic semantics (e.g., semantic parsing), the role of context, grounding, neural networks, latent variables, and inference. The hope is that this unified presentation will clarify the landscape, and show that this is an exciting time for the machine learning community to engage in the problems in natural language understanding. |
关 键 词: | 自然语言; 人工智能; 解决挑战; 神经网络 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-06:chenxin01 |
最后编审: | 2023-05-17:chenxin01 |
阅读次数: | 28 |