0


时间延迟分析

Time delay analysis
课程网址: http://videolectures.net/licsb08_higham_tda/  
主讲教师: Catherine Higham
开课单位: 格拉斯哥大学
开课时间: 2008-04-17
课程语种: 英语
中文简介:
Rogers等人已经使用贝叶斯推断和马尔可夫链蒙特卡罗方法从ODE中估计模型参数(转录因子活性的贝叶斯模型推断,BMC Bioin formatics,8(2),2006)。我们研究了将贝叶斯推理方法扩展到包含时间延迟的系统所涉及的一些问题。Verdugo和Rand(基因表达DDE模型中的Hopf分叉,《非线性科学和数值模拟中的通信》,13:235-2422008)将Lindstedt方法应用于Monk提出的延迟微分方程的非线性系统(由转录时间延迟驱动的Hes1、p53和NF·B的振荡表达,Current Biology,13:1409-1413,2003)Hes1反馈回路,产生振荡幅度和频率的闭合形式近似表达式。分析表明,在时滞参数下,通过Hopf分岔可以产生振荡解。我们将Verdugo和Rand的工作扩展到更现实的情况,其中作为反馈的关键组成部分的hes1 mRNA和hes1蛋白的衰变参数不相等,重点是振荡行为。我们旨在获得解释模型参数如何影响系统动力学的结果,从而可用于根据表达式数据进行参数估计。我们通过对一些真实的生物数据应用贝叶斯推断来说明我们的结果。已经观察到Notch信号分子(如bHLH因子Hes1)的mRNA在体节分割期间以2小时周期振荡。Hirata等人(负反馈回路调节的bHLH因子Hes1的振荡表达,科学298840-8432002)研究了Notch信号分子mRNA振荡背后的分子机制。他们详细检查了hes1mRNA的时间过程。Hirata等人测量了hes1 mRNA和hes1蛋白的半衰期,并鉴定了hes1蛋白降解的蛋白酶。他们的实验表明,Hes1 mRNA的增加需要Hes1蛋白的降解,而减少Hes1 mRNA需要重新产生该蛋白。这些事实共同支持了他们的理论,即Hes1是两小时循环时钟的重要组成部分,而不仅仅是主时钟的输出。Hirata数据包括12小时内每30分钟的缩放的hes1 mRNA表达水平。Monk的模型能够通过数值模拟解释Hirata等人观察到的培养细胞中hes1 mRNA和hes1蛋白的振荡。我们使用贝叶斯方法来解决参数问题,该方法考虑了数据中固有的不确定性,并使用先验分叉分析来通知先验的选择。
课程简介: Bayesian Inference and Markov Chain Monte Carlo methods have been ad- vocated for the estimation of model parameters from ODEs by Rogers et al. (Bayesian model-based inference of transcription factor activity, BMC Bioin- formatics, 8(2), 2006). We look at some of the issues involved in extend- ing Bayesian inference methods to systems containing time delays. Verdugo and Rand (Hopf bifurcation in a DDE model of gene expression, Commu- nications in Nonlinear Science and Numerical Simulation, 13:235-242, 2008) apply Lindstedt's method to the nonlinear system of delay di®erential equa- tions proposed as a model by Monk (Oscillatory Expression of Hes1, p53 and NF ¡·B Driven by Transcriptional Time Delays, Current Biology, 13:1409- 1413, 2003) for the Hes1 feedback loop, resulting in closed form approximate expressions for the amplitude and frequency of oscillation. Analysis shows that oscillatory solutions can arise through Hopf bifurcation in the delay pa- rameter. We extend the work of Verdugo and Rand to the more realistic case where the decay parameters of hes1 mRNA and Hes1 protein, key com- ponents of the feedback, are not equal, focusing on oscillatory behaviours. We aim for results that explain how the model parameters a®ect the system dynamics and hence could be used to inform a parameter estimation from expression data. We illustrate our results by applying Bayesian inference to some real biological data. It has been observed that mRNAs for Notch signalling molecules such as the bHLH factor Hes1 oscillate with 2-hour cycles during somite segmentation. Hirata et al. (Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop, Science 298, 840-843, 2002) investigated the molec- ular mechanism behind observed oscillations of mRNAs for Notch signalling molecules. They examined the time course of hes1 mRNA in detail. Hirata et al. measured the half lives of hes1 mRNA and Hes1 protein and identi¯ed the proteases for Hes1 protein degradation. Their experiments show that the degradation of Hes1 protein is required for Hes1 mRNA increase and that de novo production of the protein is required for reduction of hes1 mRNA. These facts together support their theory that Hes1 is an essential compo- nent of a two hour cycle clock and not just an output of a primary clock. The Hirata data comprises scaled hes1 mRNA expression level every 30 min- utes over a 12 hour period. Monk's model was able to explain, via numerical simulations, the oscillation of hes1 mRNA and Hes1 protein in cultured cells observed by Hirata et al. We use a Bayesian approach to the parameter ¯t- ting problem which takes into account the inherent uncertainity in the data and uses our a priori bifurcation analysis to inform the choice of priors.
关 键 词: 贝叶斯推断; 非线性科学; 分子机制
课程来源: 视频讲座网
数据采集: 2023-03-07:chenjy
最后编审: 2023-03-07:chenjy
阅读次数: 43