多轮影响最大化Multi-Round Influence Maximization |
|
课程网址: | http://videolectures.net/kdd2018_sun_multi-round_maximization/ |
主讲教师: | Lichao Sun |
开课单位: | 伊利诺大学芝加哥分校 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 在本文中,我们研究了多轮影响最大化(MRIM)问题,其中影响在多轮中独立于可能不同的种子集传播,目标是为每轮选择种子,以最大化在至少一轮中激活的节点的预期数量。MRIM问题模拟了病毒营销场景,其中广告商进行多轮病毒营销以推广一种产品。我们考虑两种不同的设置:1)非自适应MRIM,其中广告客户需要在一开始就确定所有轮的种子集,以及2)自适应MRIM(其中广告客户可以基于前一轮的传播结果自适应地选择种子集)。对于非自适应设置,我们设计了两种在效率和有效性之间表现出有趣权衡的算法:一种在全局水平上选择种子并实现1/2-ε近似比的交叉循环贪婪算法,以及一种轮内贪婪算法,该算法逐轮选择种子并实现1−e−(1−1/e)-ε≈0.46-ε的近似比,但通过与轮数相关的因素节省运行时间。对于自适应设置,我们设计了一种自适应算法,该算法保证对自适应最优解的1−e−(1−1/e)−ε近似。在所有情况下,我们进一步设计了基于反向影响采样方法的可扩展算法,并实现了接近线性的运行时间。我们在几个真实世界的网络上进行了实验,并证明了我们的算法对于MRIM任务是有效的。 |
课程简介: | In this paper, we study the Multi-Round Influence Maximization (MRIM) problem, where influence propagates in multiple rounds independently from possibly different seed sets, and the goal is to select seeds for each round to maximize the expected number of nodes that are activated in at least one round. MRIM problem models the viral marketing scenarios in which advertisers conduct multiple rounds of viral marketing to promote one product. We consider two different settings: 1) the non-adaptive MRIM, where the advertiser needs to determine the seed sets for all rounds at the very beginning, and 2) the adaptive MRIM, where the advertiser can select seed sets adaptively based on the propagation results in the previous rounds. For the non-adaptive setting, we design two algorithms that exhibit an interesting tradeoff between efficiency and effectiveness: a cross-round greedy algorithm that selects seeds at a global level and achieves 1/2−ε approximation ratio, and a within-round greedy algorithm that selects seeds round by round and achieves 1−e −(1−1/e)−ε ≈ 0.46−ε approximation ratio but saves running time by a factor related to the number of rounds. For the adaptive setting, we design an adaptive algorithm that guarantees 1 − e −(1−1/e) − ε approximation to the adaptive optimal solution. In all cases, we further design scalable algorithms based on the reverse influence sampling approach and achieve near-linear running time. We conduct experiments on several real-world networks and demonstrate that our algorithms are effective for the MRIM task. |
关 键 词: | 多轮影响最大化; 节点的预期数量; 交叉循环贪婪算法; 轮内贪婪算法 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-09:cyh |
最后编审: | 2023-05-15:cyh |
阅读次数: | 38 |