多任务学习:贝叶斯方法Multitask learning: the Bayesian way |
|
课程网址: | http://videolectures.net/oh06_heskes_bw/ |
主讲教师: | Tom Heskes |
开课单位: | 奈梅亨拉德堡大学 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 多任务学习特别适合贝叶斯方法。任务之间的交互推断可以通过共享似然模型中的参数和任务特定模型参数的先验来实现。选择不同的优先级,可以实现任务聚类和任务门控。在我的演讲中,预测单份报纸的销量将是一个很好的例子。 |
课程简介: | Multi-task learning lends itself particularly well to a Bayesian approach. Cross-inference between tasks can be implemented by sharing parameters in the likelihood model and the prior for the task-specific model parameters. Choosing different priors, one can implement task clustering and task gating. Throughout my presentation, predicting single-copy newspaper sales will serve as a running example. |
关 键 词: | 多任务学习; 贝叶斯方法; 任务聚类 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-09:chenjy |
最后编审: | 2023-03-09:chenjy |
阅读次数: | 30 |