神经网络在一般博弈中的状态评估Neural Networks for State Evaluation in General Game Playing |
|
课程网址: | http://videolectures.net/ecmlpkdd09_michulke_nnse/ |
主讲教师: | Daniel Michulke |
开课单位: | 德累斯顿工业大学 |
开课时间: | 2009-10-20 |
课程语种: | 英语 |
中文简介: | 与传统的游戏玩法不同,通用游戏玩法关注的是能够玩各类游戏的代理。考虑到未知游戏的规则,代理应该在没有人为干预的情况下玩得很好。为此,使用确定性博弈树搜索的代理系统需要自动构造状态值函数来指导搜索。这种类型的成功系统使用仅从游戏规则中导出的评估函数,因此忽略了通过经验的进一步改进。此外,这些函数的形式是固定的,不一定能捕捉游戏的真实状态值函数。在这项工作中,我们提出了一种基于神经网络获得评估函数的方法,该方法克服了上述问题。从游戏规则中提取的网络初始化确保了无需事先训练的合理行为。然而,如我们的结果所示,后期培训可以显著提高评估质量。 |
课程简介: | Unlike traditional game playing, General Game Playing is concerned with agents capable of playing classes of games. Given the rules of an unknown game, the agent is supposed to play well without human intervention. For this purpose, agent systems that use deterministic game tree search need to automatically construct a state value function to guide search. Successful systems of this type use evaluation functions derived solely from the game rules, thus neglecting further improvements by experience. In addition, these functions are fixed in their form and do not necessarily capture the game’s real state value function. In this work we present an approach for obtaining evaluation functions on the basis of neural networks that overcomes the aforementioned problems. A network initialization extracted from the game rules ensures reasonable behavior without the need for prior training. Later training, however, can lead to significant improvements in evaluation quality, as our results indicate. |
关 键 词: | 代理系统; 评估函数; 合理行为 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-10:chenjy |
最后编审: | 2023-05-11:chenjy |
阅读次数: | 24 |