0


经验Bernstein停止

Empirical Bernstein Stopping
课程网址: http://videolectures.net/icml08_mnih_ebs/  
主讲教师: Volodymyr Mnih
开课单位: 多伦多大学
开课时间: 2008-08-29
课程语种: 英语
中文简介:
采样是将机器学习算法扩展到大型数据集的一种流行方式。问题往往是需要多少样本。自适应停止算法以在线方式监控性能,并使其能够提前停止,从而节省宝贵的计算时间。我们专注于期望概率保证的设置,并演示了最近引入的经验Bernstein边界如何用于设计有效的停止规则。我们提供了新规则的样本复杂度上限,以及在过滤设置中模型选择和增强的经验结果。
课程简介: Sampling is a popular way of scaling up machine learning algorithms to large datasets. The question often is how many samples are needed. Adaptive stopping algorithms monitor the performance in an online fashion and make it possible to stop early, sparing valuable computation time. We concentrate on the setting where probabilistic guarantees are desired and demonstrate how recently-introduced empirical Bernstein bounds can be used to design stopping rules that are efficient. We provide upper bounds on the sample complexity of the new rules as well as empirical results on model selection and boosting in the filtering setting.
关 键 词: 机器学习; 监控性能; 经验结果
课程来源: 视频讲座网
数据采集: 2023-03-14:chenjy
最后编审: 2023-03-14:chenjy
阅读次数: 20