正则化线性模型的部分监督特征选择Partially Supervised Feature Selection with Regularized Linear Models |
|
课程网址: | http://videolectures.net/icml09_helleputte_psfs/ |
主讲教师: | Thibault Helleputt |
开课单位: | 卢旺大学 |
开课时间: | 2009-08-26 |
课程语种: | 英语 |
中文简介: | 本文讨论了用于高维数据分类的特征选择技术,例如通过微阵列实验产生的特征选择。在这种情况下,可以使用一些先验知识来将选择偏向于先验假设更相关的某些维度(基因)。我们提出了一种利用这种局部监督的特征选择方法。它使用线性模型扩展了先前关于嵌入特征选择的工作,包括正则化以增强稀疏性。该技术的一个实际近似值通过输入的迭代重新缩放简化为标准SVM学习。缩放因子在这里取决于先验知识,但最终的选择可能与此不同。几个微阵列数据集的实际结果表明,所提出的方法在所选基因列表的稳定性和改进的分类性能方面具有优势。 |
课程简介: | This paper addresses feature selection techniques for classification of high dimensional data, such as those produced by microarray experiments. Some prior knowledge may be available in this context to bias the selection towards some dimensions (genes) a priori assumed to be more relevant. We propose a feature selection method making use of this partial supervision. It extends previous works on embedded feature selection with linear models including regularization to enforce sparsity. A practical approximation of this technique reduces to standard SVM learning with iterative rescaling of the inputs. The scaling factors depend here on the prior knowledge but the final selection may depart from it. Practical results on several microarray data sets show the benefits of the proposed approach in terms of the stability of the selected gene lists with improved classification performances. |
关 键 词: | 高维数据; 特征选择; 选择方法 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-14:chenjy |
最后编审: | 2023-03-14:chenjy |
阅读次数: | 24 |