0


基于离散排序的自学习矩阵因子分解

Discrete Ranking based Matrix Factorization with Self Paced Learning
课程网址: http://videolectures.net/kdd2018_zhang_ranking_factorization/  
主讲教师: Yan Zhang
开课单位: 中国科学技术大学
开课时间: 2018-11-23
课程语种: 英语
中文简介:
top-k推荐的效率对于大规模推荐系统至关重要。哈希不仅是一种有效的替代方法,而且是分布式计算的补充,在资源有限的计算环境中也是一种实用有效的选择。哈希技术通过用二进制代码表示用户和项目来提高在线推荐的效率。然而,现有方法的目标函数与推荐系统的最终目标不一致,通常通过离散坐标下降进行优化,容易陷入局部最优。为此,我们基于每个用户的成对偏好,提出了一种基于离散排序的矩阵因子分解(DRMF)算法,并将其公式化为二进制二次规划问题,以学习二进制代码。由于非凸性和二元约束,我们进一步提出了用于改进优化的自进度学习,以包括从简单到复杂的成对偏好。我们最后在三个公开的真实世界数据集上评估了所提出的算法,并表明所提出的方法优于最先进的基于哈希的推荐算法,甚至实现了与矩阵分解方法相当的性能。
课程简介: The efficiency of top-k recommendation is vital to large-scale recommender systems. Hashing is not only an efficient alternative but also complementary to distributed computing, and also a practical and effective option in a computing environment with limited resources. Hashing techniques improve the efficiency of online recommendation by representing users and items by binary codes. However, objective functions of existing methods are not consistent with ultimate goals of recommender systems, and are often optimized via discrete coordinate descent, easily getting stuck in a local optimum. To this end, we propose a Discrete Ranking-based Matrix Factorization (DRMF) algorithm based on each user’s pairwise preferences, and formulate it into binary quadratic programming problems to learn binary codes. Due to non-convexity and binary constraints, we further propose self-paced learning for improving the optimization, to include pairwise preferences gradually from easy to complex. We finally evaluate the proposed algorithm on three public real-world datasets, and show that the proposed algorithm outperforms the state-of-the-art hashing-based recommendation algorithms, and even achieves comparable performance to matrix factorization methods.
关 键 词: 基于离散排序; 自学习矩阵因子分解; 大规模推荐系统; 真实世界数据集; 哈希技术
课程来源: 视频讲座网
数据采集: 2023-03-15:cyh
最后编审: 2023-03-15:cyh
阅读次数: 28