有限种群中的演化动力学:振荡、扩散和漂移逆转Evolutionary Dynamics in Finite Populations: Oscillations, Diffusion, and Drift Reversal |
|
课程网址: | http://videolectures.net/eccs07_claussen_edf/ |
主讲教师: | Jens Christian Claussen |
开课单位: | 基尔大学 |
开课时间: | 2007-11-28 |
课程语种: | 英语 |
中文简介: | 协同进化动力学在从生物到社会动力学系统的广泛范围内出现。对于无限种群,分析动力学的标准方法是确定性复制方程,但缺乏系统推导。在有限总体建模中,高斯噪声导致的有限尺寸随机性一般不受保证[1]。我们表明,对于进化的Moran过程和局部更新过程,无限种群的显式限制分别导致调整的或标准的复制子动力学[2]。此外,种群大小的一阶修正由有限大小更新随机性给出,并且可以作为福克-普朗克方程[2]的广义扩散项导出。这种框架可以很容易地转移到其他微观过程中,如局部费米过程[3]或过程中包含突变[4]。我们明确讨论了囚徒困境和道金的性别之战的差异,其中我们表明,Moran过程中的随机更新波动导致有限大小相关的漂移反转[2]。[1] J.C.克劳森和A.特劳森,物理学。修订版E 71,025101(R)(2005);[2] A.Traulsen,J.C.Clausen,C.Hauert,Phys。Rev.Lett,95238701;[3] A.Traulsen,M.A.Nowak,J.M.Pacheco,Phys。修订版E 74,011909(2006);[4] A.Traulsen,J.C.Clausen,C.Hauert,Phys。修订版E 74,011901(2006)。 |
课程简介: | Coevolutionary dynamics arises in a wide range from biological to social dynamical systems. For infinite populations, a standard approach to analyze the dynamics are deterministic replicator equations, however lacking a systematic derivation. In finite populations modelling finite-size stochasticity by Gaussian noise is not in general warranted [1]. We show that for the evolutionary Moran process and a Local update process, the explicit limit of infinite populations leads to the adjusted or the standard replicator dynamics, respectively [2]. In addition, the first-order corrections in the population size are given by the finite-size update stochasticity and can be derived as a generalized diffusion term of a Fokker-Planck equation [2]. This framework can be readily transferred to other microscopic processes, as the local Fermi process [3] or the inclusion of mutations in the process [4]. We explicitely discuss the differences for the Prisoner's Dilemma, and Dawkin's Battle of the Sexes, where we show that the stochastic update fluctuations in the Moran process lead to a finite-size dependent drift reversal [2]. [1] J.C. Claussen and A. Traulsen, Phys. Rev. E 71, 025101(R) (2005); [2] A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. Lett, 95, 238701; [3] A.Traulsen, M.A.Nowak, J.M.Pacheco, Phys. Rev. E 74, 011909 (2006); [4] A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. E 74, 011901 (2006). |
关 键 词: | 协同进化; 总体建模; 漂移反转 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-15:chenjy |
最后编审: | 2023-03-15:chenjy |
阅读次数: | 44 |