0


基于监督矩阵复杂度的主动特征获取

Active Feature Acquisition with supervised Matrix Completition
课程网址: http://videolectures.net/kdd2018_huang_acquisition_matrix/  
主讲教师: Sheng-Jun Huang
开课单位: 南京航空航天大学
开课时间: 2018-11-23
课程语种: 英语
中文简介:
在许多应用中,特征缺失是一个严重的问题,这可能导致训练数据质量低下,并进一步显著降低学习性能。虽然特征获取通常涉及特殊设备或复杂过程,但获取整个数据集的所有特征值是昂贵的。另一方面,特征可以相互关联,并且可以从其他值中恢复一些值。因此,决定哪些特征对于恢复其他特征以及提高学习性能来说信息量最大是很重要的。在本文中,我们试图通过联合执行主动特征查询和监督矩阵完成来训练一个具有最小获取成本的有效分类模型。在完成特征矩阵时,提出了一种新的目标函数,以同时最小化观测条目的重建误差和训练数据的监督损失。当查询特征值时,根据先前迭代的方差,主动选择最不确定的条目。此外,当特征承担不同的获取成本时,提出了一种双目标优化方法来进行成本感知的主动选择。理论分析和实验研究都很好地验证了所提出方法的有效性。
课程简介: Feature missing is a serious problem in many applications, which may lead to low quality of training data and further significantly degrade the learning performance. While feature acquisition usually involves special devices or complex processes, it is expensive to acquire all feature values for the whole dataset. On the other hand, features may be correlated with each other, and some values may be recovered from the others. It is thus important to decide which features are most informative for recovering the other features as well as improving the learning performance. In this paper, we try to train an effective classification model with the least acquisition cost by jointly performing active feature querying and supervised matrix completion. When completing the feature matrix, a novel objective function is proposed to simultaneously minimize the reconstruction error on observed entries and the supervised loss on training data. When querying the feature value, the most uncertain entry is actively selected based on the variance of previous iterations. In addition, a bi-objective optimization method is presented for cost-aware active selection when features bear different acquisition costs. The effectiveness of the proposed approach is well validated by both theoretical analysis and experimental study.
关 键 词: 基于监督矩阵复杂度; 主动特征获取; 双目标优化方法; 主动特征查询和监督矩阵
课程来源: 视频讲座网
数据采集: 2023-03-16:cyh
最后编审: 2023-03-16:cyh
阅读次数: 28