用于网络级推荐系统的图卷积神经网络Graph Convolutional Neural Networks for Web‑Scale Recommender Systems |
|
课程网址: | http://videolectures.net/kdd2018_he_web_scale_recommender_systems... |
主讲教师: | Ruining He |
开课单位: | |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 用于图结构数据的深度神经网络的最新进展已经在推荐系统基准上带来了最先进的性能。然而,使这些方法实用并可扩展到具有数十亿项目和数亿用户的网络规模的推荐任务仍然是一个尚未解决的挑战。在这里,我们描述了我们在Pinterest开发和部署的一个大规模深度推荐引擎。我们开发了一种数据高效的图卷积网络(GCN)算法,该算法结合了有效的随机游动和图卷积来生成节点(即项目)的嵌入,该嵌入包含了图结构和节点特征信息。与现有的GCN方法相比,我们开发了一种基于高效随机游动的新方法来构造卷积,并设计了一种新的训练策略,该策略依赖于越来越难的训练实例来提高模型的鲁棒性和收敛性。我们还开发了一种高效的MapReduce模型推理算法,以使用经过训练的模型生成嵌入。总的来说,我们可以在比典型的GCN实现大四个数量级的图上进行训练和嵌入。我们展示了如何在Pinterest的各种设置中使用GCN嵌入来进行高质量的推荐,Pinterest有一个庞大的底层图,其中有30亿个节点代表引脚和板,以及170亿条边。根据离线指标、用户研究以及A/B测试,我们的方法生成的推荐质量高于可比的基于深度学习的系统。据我们所知,这是迄今为止深度图嵌入的最大应用,为新一代基于图卷积架构的网络级推荐系统铺平了道路。 |
课程简介: | Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains an unsolved challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. Overall, we can train on and embed graphs that are four orders of magnitude larger than typical GCN implementations. We show how GCN embeddings can be used to make high-quality recommendations in various settings at Pinterest, which has a massive underlying graph with 3 billion nodes representing pins and boards, and 17 billion edges. According to offline metrics, user studies, as well as A/B tests, our approach generates higher-quality recommendations than comparable deep learning based systems. To our knowledge, this is by far the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures. |
关 键 词: | 网络级推荐系统; 图卷积神经网络; 图结构数据的深度神经网络; 图卷积网络; Pinterest开发和部署; 网络规模的推荐任务 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-16:cyh |
最后编审: | 2023-03-16:cyh |
阅读次数: | 45 |