0


十年:多元时间序列的深度度量学习模型

DECADE: A Deep Metric Learning Model for Multivariate Time Series
课程网址: http://videolectures.net/kdd2017_che_deep_metric_learning/  
主讲教师: Zhengping Che
开课单位: 南加州大学
开课时间: 2017-12-01
课程语种: 英语
中文简介:
确定多元时间序列序列之间的相似性(或距离)是时间序列分析中的一个基本问题。复杂的时间依赖性和时间序列的可变长度使它成为一项极具挑战性的任务。现有的大多数工作要么依赖于缺乏灵活性和理论证明的启发式,要么构建复杂的算法,无法扩展到大数据。在本文中,我们提出了一种新颖而有效的多维时间序列度量学习模型,称为深度期望对齐距离(DECADE)。它通过从创新的对齐机制(即预期对齐)采样,为长度不等的时间序列产生有效的距离度量,并捕获深度网络学习的局部表示中复杂的时间多元依赖关系。总体而言,通过端到端梯度训练,DECADE能够高效地提供有效的数据依赖距离度量。在具有多元时间序列的合成数据集和应用数据集上的大量实验表明,与最先进的方法相比,DECADE具有优越的性能。
课程简介: Determining similarities (or distance) between multivariate time series sequences is a fundamental problem in time series analysis. The complex temporal dependencies and variable lengths of time series make it an extremely challenging task. Most existing work either rely on heuristics which lacks flexibility and theoretical justifications, or build complex algorithms that are not scalable to big data. In this paper, we propose a novel and effective metric learning model for multivariate time series, referred to as Deep ExpeCted Alignment DistancE (DECADE). It yields a valid distance metric for time series with unequal lengths by sampling from an innovative alignment mechanism, namely expected alignment, and captures complex temporal multivariate dependencies in local representation learned by deep networks. On the whole, DECADE can provide valid data-dependent distance metric efficiently via end-to-end gradient training. Extensive experiments on both synthetic and application datasets with multivariate time series demonstrate the superior performance of DECADE compared to the state-of-the-art approaches.
关 键 词: 时间序列; 时间依赖; 构建算法
课程来源: 视频讲座网
数据采集: 2023-03-20:chenxin01
最后编审: 2023-05-19:liyy
阅读次数: 43