美国有线电视新闻网(CNN)图像检索从BoW学习:无监督微调(带硬例子)CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples |
|
课程网址: | http://videolectures.net/eccv2016_radenovic_cnn_image/ |
主讲教师: | Filip Radenović |
开课单位: | 布拉格捷克技术大学 |
开课时间: | 2016-10-24 |
课程语种: | 英语 |
中文简介: | 卷积神经网络(cnn)在许多计算机视觉任务中实现了最先进的性能。但是,为了从头开始执行训练或对目标任务进行微调,在实现此功能之前需要进行极端的手动注释。在这项工作中,我们建议对CNN进行微调,以完全自动化的方式从大量无序图像中检索图像。我们采用最先进的检索和结构从运动(SfM)方法来获取3D模型,用于指导CNN微调训练数据的选择。我们表明,硬正示例和硬反示例都提高了使用紧凑代码检索特定对象的最终性能。 |
课程简介: | Convolutional Neural Networks (CNNs) achieve state-of-the-art performance in many computer vision tasks. However, this achievement is preceded by extreme manual annotation in order to perform either training from scratch or fine-tuning for the target task. In this work, we propose to fine-tune CNN for image retrieval from a large collection of unordered images in a fully automated manner. We employ state-of-the-art retrieval and Structure-from-Motion (SfM) methods to obtain 3D models, which are used to guide the selection of the training data for CNN fine-tuning. We show that both hard positive and hard negative examples enhance the final performance in particular object retrieval with compact codes. |
关 键 词: | 神经网络; 手动注释; 检索图像 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-22:chenxin01 |
最后编审: | 2023-05-22:chenxin01 |
阅读次数: | 54 |