贝叶斯推理:原则与实践Bayesian Inference: Principles and Practice |
|
课程网址: | http://videolectures.net/mlss03_tipping_pp/ |
主讲教师: | Mike Tipping |
开课单位: | Vector Anomaly |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 本课程的目标有两个:传达贝叶斯机器学习的基本原理,并描述一个实际的实现框架。首先,我们将介绍贝叶斯方法,重点介绍概率建模的优点,先验概念和边缘化的关键原则。其次,我们将利用这些思想来实现稀疏线性回归和分类的实用算法,例如“相关向量机”等模型。 |
课程简介: | The aim of this course is two-fold: to convey the basic principles of Bayesian machine learning and to describe a practical implementation framework. Firstly, we will give an introduction to Bayesian approaches, focussing on the advantages of probabilistic modelling, the concept of priors, and the key principle of marginalisation. Secondly, we will exploit these ideas to realise practical algorithms for sparse linear regression and classification, as exemplified by models such as the "relevance vector machine". |
关 键 词: | 概率建模; 线性回归; 边缘原则 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-22:chenxin01 |
最后编审: | 2023-05-22:chenxin01 |
阅读次数: | 27 |