利用聚光灯机制从结构图像中转录内容Transcribing Content from Structural Images with Spotlight Mechanism |
|
课程网址: | http://videolectures.net/kdd2018_yin_transcribing_content/ |
主讲教师: | Yu Yin |
开课单位: | 中国科学技术大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 在过去的十年里,数字媒体(网络或应用程序出版商)普遍使用实时广告拍卖来销售他们的广告空间。创建了多个拍卖平台,也称为供应方平台(SSP)。由于这种多样性,出版商开始在SSP之间制造竞争。在这种设置中,有两个连续的拍卖:每个SSP中的第二个价格拍卖和SSP之间的第二次第一个价格拍卖,称为标头竞价拍卖。在本文中,我们考虑一个SSP与其他SSP竞争广告空间。SSP充当想要购买广告位的广告商和想要出售其广告位的网络出版商之间的中介,并且需要定义投标策略,以便能够在尽可能少的支出的同时向广告商提供尽可能多的广告。这个单一共享平台的收入优化可以写成一个上下文盗贼问题,其中上下文包含有关广告机会的可用信息,例如互联网用户的财产或广告位置。在这种情况下,使用经典的多武器强盗策略(如UCB和EXP3的原始版本)效率低下,收敛速度低,因为武器之间的相关性很强。在本文中,我们设计并实验了汤普森采样算法的一个版本,该算法很容易将这种相关性考虑在内。我们将这种贝叶斯算法与粒子滤波器相结合,粒子滤波器允许通过顺序估计最高出价的分布来处理非平稳性,以赢得拍卖。我们在两个真实的拍卖数据集上应用了这种方法,并表明它显著优于更经典的方法。本文中定义的策略正在开发中,将部署在全球数千家出版商身上。 |
课程简介: | Transcribing content from structural images, e.g., writing notes from music scores, is a challenging task as not only the content objects should be recognized, but the internal structure should also be preserved. Existing image recognition methods mainly work on images with simple content (e.g., text lines with characters), but are not capable to identify ones with more complex content (e.g., structured code), which often follow a fine-grained grammar. To this end, in this paper, we propose a hierarchical Spotlight Transcribing Network (STN) framework followed by a two-stage “where-to-what’’ solution. Specifically, we first decide “where-to-look’’ through a novel spotlight mechanism to focus on different areas of the original image following its structure. Then, we decide “what-to-write’’ by developing a GRU based network with the spotlight areas for transcribing the content accordingly. Moreover, we propose two implementations on the basis of STN, i.e., STNM and STNR, where the spotlight movement follows the Markov property and Recurrent modeling, respectively. We also design a reinforcement method to refine our STN framework by self-improving the spotlight mechanism. We conduct extensive experiments on many structural image datasets, where the results clearly demonstrate the effectiveness of STN framework. |
关 键 词: | 聚光灯转录网络; 从结构图像中转录内容; STN框架机械装置; 遵循马尔可夫属性和递归建模 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-23:cyh |
最后编审: | 2023-03-23:cyh |
阅读次数: | 39 |