0


NetLSD:听到图形的形状

NetLSD: Hearing the Shape of a Graph
课程网址: http://videolectures.net/kdd2018_tsitsulin_netLSD_shape_graph/  
主讲教师: Anton Tsitsulin
开课单位: 波茨坦大学哈索·普拉特纳研究所
开课时间: 2018-11-23
课程语种: 英语
中文简介:
图之间的比较在图分析中无处不在。然而,就所采用的相似性度量的表现力及其计算效率而言,这是一项艰巨的任务。理想情况下,图比较应该对节点的顺序和被比较图的大小保持不变,对图模式的规模具有自适应性,并且是可扩展的。不幸的是,这些财产没有一起处理。图比较仍然依赖于直接方法、图内核或基于表示的方法,这些方法对于大型图集合来说都是低效且不切实际的。在本文中,我们提出了网络拉普拉斯谱描述符(NetLSD):据我们所知,第一种置换和大小不变、尺度自适应和高效可计算的图表示方法,可以直接比较大型图。NetLSD提取一个紧签名,该签名继承了拉普拉斯谱的形式财产,特别是其热核或波核;因此,它可以听到图形的形状。我们对各种真实世界图形的评估表明,它在表现力和效率方面都优于以前的作品
课程简介: Comparison among graphs is ubiquitous in graph analytics. However, it is a hard task in terms of the expressiveness of the employed similarity measure and the efficiency of its computation. Ideally, graph comparison should be invariant to the order of nodes and the sizes of compared graphs, adaptive to the scale of graph patterns, and scalable. Unfortunately, these properties have not been addressed together. Graph comparisons still rely on direct approaches, graph kernels, or representation-based methods, which are all inefficient and impractical for large graph collections. In this paper, we propose the Network Laplacian Spectral Descriptor (NetLSD): the first, to our knowledge, permutation- and size-invariant, scale-adaptive, and efficiently computable graph representation method that allows for straightforward comparisons of large graphs. NetLSD extracts a compact signature that inherits the formal properties of the Laplacian spectrum, specifically its heat or wave kernel; thus, it hears the shape of a graph. Our evaluation on a variety of real-world graphs demonstrates that it outperforms previous works in both expressiveness and efficiency
关 键 词: NetLSD; 听到图形的形状; 大型图集合; 拉普拉斯谱; 真实世界图形
课程来源: 视频讲座网
数据采集: 2023-03-23:cyh
最后编审: 2023-03-23:cyh
阅读次数: 47