基于Web的排序问题的在线参数选择Online Parameter Selection for Web-based Ranking Problems |
|
课程网址: | http://videolectures.net/kdd2018_agarwal_online_parameter_selecti... |
主讲教师: | Deepak Agarwal |
开课单位: | 领英公司 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 基于网络的排名问题涉及在列表或网格中对不同类型的项目进行排序,以便在网站或移动应用程序等介质中显示。在大多数情况下,有多个目标或指标,如点击量、病毒式行动、求职申请、广告收入和其他我们想要平衡的目标或指标。构建一种在多个目标之间实现所需权衡的服务算法是具有挑战性的,尤其是对于两个以上的目标。此外,对于具有频繁在线干预的非平稳系统,通常不可能单独使用离线数据来估计这样的服务方案。我们考虑一个大规模的在线应用程序,其中多个目标的指标是连续可用的,并且可以通过改变排名模型中的某些控制参数以所需的方式进行控制。我们假设所需的度量平衡是从业务考虑中已知的。我们的方法通过控制参数空间上的高斯过程将平衡准则建模为复合效用函数。我们证明,获得一个解可以等同于找到高斯过程的最大值,实际上可以通过贝叶斯优化获得。然而,为大规模应用实现这样的方案是具有挑战性的。我们提供了一个新的框架来实现这一点,并在LinkedIn Feed的背景下说明了它的功效。特别是,我们通过使用离线模拟和有希望的在线A/B测试结果来展示我们方法的有效性。在撰写本文时,所描述的方法已在LinkedIn Feed上完全部署。 |
课程简介: | Web-based ranking problems involve ordering different kinds of items in a list or grid to be displayed in mediums like a website or a mobile app. In most cases, there are multiple objectives or metrics like clicks, viral actions, job applications, advertising revenue and others that we want to balance. Constructing a serving algorithm that achieves the desired tradeoff among multiple objectives is challenging, especially for more than two objectives. In addition, it is often not possible to estimate such a serving scheme using offline data alone for non-stationary systems with frequent online interventions. We consider a large-scale online application where metrics for multiple objectives are continuously available and can be controlled in a desired fashion by changing certain control parameters in the ranking model. We assume that the desired balance of metrics is known from business considerations. Our approach models the balance criteria as a composite utility function via a Gaussian process over the space of control parameters. We show that obtaining a solution can be equated to finding the maximum of the Gaussian process, practically obtainable via Bayesian optimization. However, implementing such a scheme for large-scale applications is challenging. We provide a novel framework to do so and illustrate its efficacy in the context of LinkedIn Feed. In particular, we show the effectiveness of our method by using both offline simulations as well as promising online A/B testing results. At the time of writing this paper, the method described was fully deployed on the LinkedIn Feed. |
关 键 词: | 基于Web的排序问题; 在线参数选择; LinkedIn Feed; 基于网络的排名问题; 不同类型的项目进行排序 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-23:cyh |
最后编审: | 2023-03-27:cyh |
阅读次数: | 37 |