0


基于Twitter的大规模高精度主题建模

Large Scale High-Precision Topic Modeling on Twitter
课程网址: http://videolectures.net/kdd2014_yang_twitter/  
主讲教师: Shuang-Hong Yang
开课单位: 推特股份有限公司
开课时间: 2014-10-07
课程语种: 英语
中文简介:
我们感兴趣的是将连续的稀疏和嘈杂的文本流(称为“tweet”)实时组织成包含数百个主题的本体论,具有可测量的严格高精度。这种推断是在完整的Twitter(推特)数据流上执行的,其统计分布随着时间的推移而迅速演变。在工业环境中实现,有可能影响实际用户并使其可见,因此有必要克服一系列实际挑战。我们提出了一系列主题建模技术,这些技术有助于部署系统。这些技术包括非主题推文检测、自动标记数据采集、人工计算评估、诊断和纠正学习,以及最重要的高精度主题推断。后者代表了一种新的用于推文文本分类的两阶段训练算法和一种用于将文本与额外信息源结合的闭环推理机制。由此产生的系统在全面覆盖的情况下达到93%的精度。
课程简介: We are interested in organizing a continuous stream of sparse and noisy texts, known as "tweets", in real time into an ontology of hundreds of topics with measurable and stringently high precision. This inference is performed over a full-scale stream of Twitter data, whose statistical distribution evolves rapidly over time. The implementation in an industrial setting with the potential of affecting and being visible to real users made it necessary to overcome a host of practical challenges. We present a spectrum of topic modeling techniques that contribute to a deployed system. These include non-topical tweet detection, automatic labeled data acquisition, evaluation with human computation, diagnostic and corrective learning and, most importantly, high-precision topic inference. The latter represents a novel two-stage training algorithm for tweet text classification and a close-loop inference mechanism for combining texts with additional sources of information. The resulting system achieves 93% precision at substantial overall coverage.
关 键 词: 统计分布; 主题建模; 推文检测
课程来源: 视频讲座网
数据采集: 2023-03-26:chenxin01
最后编审: 2023-05-22:chenxin01
阅读次数: 35