基于整数规划的无监督P2P租赁推荐Unsupervised P2P Rental Recommendations via Integer Programming |
|
课程网址: | http://videolectures.net/kdd2017_fu_rental_recommendations/ |
主讲教师: | Yanjie Fu |
开课单位: | 密苏里科技大学 |
开课时间: | 2017-10-09 |
课程语种: | 英语 |
中文简介: | 由于质量评级数据的稀疏性,无监督推荐系统被用于P2P租赁市场的许多应用程序中,如Airbnb、FlipKey和HomeAway。我们提出了一个基于整数规划的推荐系统,其中住宿场所的住宿效益和社区风险都被测量,并被纳入目标函数作为效用测量。更具体地说,我们首先提出了一种无监督的融合评分方法,用于量化住宿的住宿效益和社区风险与众包地理标记数据。从推荐效用最大化的角度出发,我们将无监督P2P租赁推荐制定为约束整数规划问题,其中推荐的住宿效益最大化,推荐的社区风险最小化,同时保持个性化约束。此外,我们提供了一个有效的解决优化问题的方法,通过开发一种学习到整数规划方法,将聚合的列表学习排列到分支变量选择。我们将提出的方法应用于纽约市的Airbnb数据,并为旅行者提供住宿建议。在实证实验中,我们证明了我们的方法在达到市场满意时间、评论数量之间的权衡,以及在积极和消极方面实现平衡方面的有效性,以及我们方法的效率提高。 |
课程简介: | Due to the sparseness of quality rating data, unsupervised recommender systems are used in many applications in Peer to Peer (P2P) rental marketplaces such as Airbnb, FlipKey, and HomeAway. We present an integer programming based recommender systems, where both accommodation benefit and community risk of lodging places are measured and are incorporated into objective function as utility measurements. More specifically, we first present an unsupervised fused scoring method for quantifying the accommodation benefit and community risk of a lodging with crowd-sourced geo-tagged data. In the view of maximizing the utility of recommendations, we formulate the unsupervised P2P rental recommendations as a constrained integer programming problem, where the accommodation benefit of recommendations is maximized and the community risk of recommendations is minimized, while maintaining constraints on personalization. Furthermore, we provide an e fficient solution for the optimization problem by developing a learning to integer programming method for combining aggregated listwise learning to rank into branching variable selection. We apply the proposed approach to the Airbnb data of New York City and provide lodging recommendations to travelers. In empirical experiments, we demonstrate the effectiveness of our method in striking a trade-off among satisfaction time on market, number of reviews, and achieving a balance between positive and negative sides, as well as the effi ciency enhancement of our methods. |
关 键 词: | 质量评级; 监督系统; 租聘市场; 应用程序 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-26:chenxin01 |
最后编审: | 2023-05-22:chenxin01 |
阅读次数: | 27 |