社交媒体推荐Recommendation in Social Media |
|
课程网址: | http://videolectures.net/kdd2014_tang_tang_liu_media/ |
主讲教师: | Huan Liu; Jie Tang; Jiliang Tang |
开课单位: | 亚利桑那州立大学;清华大学 |
开课时间: | 2014-10-07 |
课程语种: | 英语 |
中文简介: | 社交媒体的广泛使用以前所未有的速度产生大量数据,社交媒体用户的信息过载问题日益严重。推荐已经被证明可以有效地缓解信息过载问题,在提高用户体验质量方面展示了它的力量,并对社交媒体的成功产生了积极的影响。社交媒体引入的新型数据不仅为传统的推荐系统提供了更多的信息,而且也为推荐研究提供了新的可能性。在本教程中,我们的目标是全面概述社交媒体中的各种推荐任务,特别是它们的最新进展和新领域。我们将介绍基本概念,回顾最先进的算法,并讨论新出现的挑战和机遇。最后,我们通过讨论社交媒体推荐的开放问题和挑战来总结教程。 |
课程简介: | The pervasive use of social media generates massive data in an unprecedented rate and the information overload problem becomes increasingly severe for social media users. Recommendation has been proven to be effective in mitigating the information overload problem, demonstrated its strength in improving the quality of user experience, and positively impacted the success of social media. New types of data introduced by social media not only provide more information to advance traditional recommender systems but also manifest new research possibilities for recommendation. In this tutorial, we aim to provide a comprehensive overview of various recommendation tasks in social media, especially their recent advances and new frontiers. We introduce basic concepts, review state-of-the-art algorithms, and deliberate the emerging challenges and opportunities. Finally we summarize the tutorial with discussions on open issues and challenges about recommendation in social media. |
关 键 词: | 社交媒体; 信息过载; 体验质量 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-27:chenxin01 |
最后编审: | 2023-05-22:chenxin01 |
阅读次数: | 31 |