问答:互动推荐的两阶段方法Q&R: A Two‑Stage Approach toward Interactive Recommendation |
|
课程网址: | http://videolectures.net/kdd2018_beutel_interactive_recommendatio... |
主讲教师: | Alex Beutel |
开课单位: | 谷歌股份有限公司的研究 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 在许多应用程序中流行的推荐系统旨在在正确的时间向用户展示正确的内容。最近,研究人员渴望开发能够与用户无缝互动的对话系统,更有效地激发用户偏好并提供更好的推荐。为了实现这一目标,本文探讨了与用户进行单轮对话的两个阶段:向用户提出哪个问题,以及如何利用他们的反馈做出更准确的建议。在这两个阶段之后,首先,我们详细介绍了一个基于RNN的模型,用于生成用户可能感兴趣的主题,然后扩展了一个最先进的基于RNN视频推荐器,以包含用户选择的主题。我们描述了我们提出的系统问答,即问题和建议,以及我们用来引导数据以训练我们的模型的代理任务。我们评估了YouTube内各种应用程序中实时流量问答的不同组成部分:用户登录、主页推荐和通知。我们的结果表明,我们的方法改进了包括RNN在内的最先进的推荐模型,并使这些应用程序更加有用,例如打开的视频通知增加了>1%。此外,我们的设计选择对于想要过渡到更多对话式推荐系统的从业者来说是有用的。 |
课程简介: | Recommendation systems, prevalent in many applications, aim to surface to users the right content at the right time. Recently, researchers have aspired to develop conversational systems that offer seamless interactions with users, more effectively eliciting user preferences and offering better recommendations. Taking a step towards this goal, this paper explores the two stages of a single round of conversation with a user: which question to ask the user, and how to use their feedback to respond with a more accurate recommendation. Following these two stages, first, we detail an RNN-based model for generating topics a user might be interested in, and then extend a state-of-the-art RNN-based video recommender to incorporate the user’s selected topic. We describe our proposed system Q&R, i.e., Question & Recommendation, and the surrogate tasks we utilize to bootstrap data for training our models. We evaluate different components of Q&R on live traffic in various applications within YouTube: User Onboarding, Homepage Recommendation, and Notifications. Our results demonstrate that our approach improves upon state-of-the-art recommendation models, including RNNs, and makes these applications more useful, such as a >1% increase in video notifications opened. Further, our design choices can be useful to practitioners wanting to transition to more conversational recommendation systems. |
关 键 词: | 互动推荐; 两阶段方法; 流行的推荐系统; 激发用户偏好; 训练模型的代理任务 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-27:cyh |
最后编审: | 2023-03-27:cyh |
阅读次数: | 19 |