子空间网络:神经退行性疾病建模的深度多任务截尾回归Subspace Network: Deep Multi-Task Censored Regression for Modeling Neurodegenerative Diseases |
|
课程网址: | http://videolectures.net/kdd2018_sun_subspace_network/ |
主讲教师: | Mengying Sun |
开课单位: | 密歇根州立大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 在过去的十年里,已经开发了一系列的机器学习模型来对神经退行性疾病进行建模,将生物标志物,特别是非侵入性神经成像标志物,与测量患者认知状态的关键临床评分相关联。多任务学习(MTL)已被这些研究普遍用于解决高维度和小队列规模的挑战。然而,大多数现有的MTL方法都是基于线性模型的,并受到两个主要限制:1)它们不能明确考虑这些临床评分的上限/下限;2) 它们缺乏捕捉变量之间复杂的非线性相互作用的能力。在本文中,我们提出了子空间网络,这是一种有效的非线性多任务截尾回归的深度建模方法。子空间网络的每一层都执行多任务截尾回归,以通过绘制低维子空间来执行学习任务之间的知识转移,从而改进来自最后一层的预测。在温和的假设下,对于每一层,仅使用一次训练数据就可以恢复参数子空间。经验结果表明,所提出的子空间网络可以快速提取正确的参数子空间,并且在使用脑成像信息预测神经退行性临床评分方面优于现有技术。 |
课程简介: | Over the past decade a wide spectrum of machine learning models have been developed to model the neurodegenerative diseases, associating biomarkers, especially non-intrusive neuroimaging markers, with key clinical scores measuring the cognitive status of patients. Multi-task learning (MTL) has been commonly utilized by these studies to address high dimensionality and small cohort size challenges. However, most existing MTL approaches are based on linear models and suffer from two major limitations: 1) they cannot explicitly consider upper/lower bounds in these clinical scores; 2) they lack the capability to capture complicated non-linear interactions among the variables. In this paper, we propose Subspace Network, an efficient deep modeling approach for non-linear multi-task censored regression. Each layer of the subspace network performs a multi-task censored regression to improve upon the predictions from the last layer via sketching a low-dimensional subspace to perform knowledge transfer among learning tasks. Under mild assumptions, for each layer the parametric subspace can be recovered using only one pass of training data. Empirical results demonstrate that the proposed subspace network quickly picks up the correct parameter subspaces, and outperforms state-of-the-arts in predicting neurodegenerative clinical scores using information in brain imaging. |
关 键 词: | 机器学习模型; 多任务学习; 子空间网络; 多任务截尾回归 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-27:cyh |
最后编审: | 2023-03-27:cyh |
阅读次数: | 37 |